

ULTRASONIC STUDIES ON NON-AQUEOUS SOLUTIONS OF TOLUENE IN NITROBENZENE

M.Thirunavukkarasu<sup>a\*</sup>, N.Kanagathara<sup>a</sup>

<sup>a</sup> Department of Physics, Vel Tech Multi Tech Dr.Rangarajan Dr.Sakunthala Engg.College,

Avadi, Chennai-62

\*Corresponding Author Email: <u>thiruarasu80@gmail.com</u>

#### **RECEIVED ON 20-07-2011**

Research Article ACCEPTED ON 03-08-2011

### ABSTRACT

Ultrasonic studies are extensively used in the conformational analysis of organic molecules. The ultrasonic study can give the indication of complex formation through hydrogen bonding in the system. Recently researchers suggested that adiabatic compressibility also used for detecting hydrogen bond formation in solutions. The ultrasonic velocity measurement is a unique tool in characterizing the structure and properties of the system and provides significant information on the arrangement of matter in solutions and also finds an extensive application in studying the nature of intermolecular forces. In the present work, attempts have been made to investigate the behavior of Toluene and Nitrobenzene at various concentrations also at different temperatures. The Ultrasonic velocity, viscosity and density are measured experimentally. In order to get more information on the nature and strength of molecular interaction, we have calculated the other related acoustical parameter such as adiabatic compressibility, intermolecular free length, Rao's constant, internal pressure, and free volume. The non-linear variations of these derived acoustical parameters with different concentration of the solute explained on the basis of structural changes occurring in a solution.

### Author Keywords:

Toluene, Nitrobenzene, Velocity, Rao's Constant, adiabatic compressibility etc.,

### Introduction

Ultrasonic investigation of liquid mixtures consisting of polar and non-polar components is of considerable importance in understanding intermolecular interaction between the component molecules and they find applications in several industrial and technological processes [1-3]. Moreover, the behaviour of a non-polar molecule in a different polar environment can also be discussed with the ternary system. These liquid mixtures are of interest to organic chemists who want to know about the types of bonds, type of molecular interactions, etc. The values of ultrasonic velocity, density, viscosity and adiabatic compressibility as a function of concentration will be of much help in

providing such information. Further, such studies as a function of concentration are useful in gaining insight into the structure and bonding of associated molecular complexes and other molecular processes. The ultrasonic study can give the indication of complex formation through hydrogen bonding in the system. Recently researchers suggested that compressibility also adiabatic used for hydrogen bond formation detecting in The solutions. ultrasonic velocity measurement is a unique tool in characterizing the structure and properties of the system and provides significant information on the arrangement of matter in solutions and also finds an extensive application in studying the



# Available Online through www.ijpbs.com

nature of intermolecular forces. Accurate knowledge of thermodynamic mixing properties such as adiabatic compressibility, intermolecular free length, free volume, internal pressure and molar volume and their excess values for mixtures of protic, non-protic and associated liquids has a great importance in theoretical and applied areas of research.

Toluene is mono-substituted benzene derivative, i.e. one in which a single hydrogen atom from the benzene molecule has been replaced by a univalent group, in this case CH<sub>3</sub>. Toluene is an important organic solvent, but is also capable of dissolving a number of notable inorganic chemicals such as sulfur.

Nitrobenzene is an organic compound with the chemical formula C<sub>6</sub>H<sub>5</sub>NO<sub>2</sub>.It is highly toxic. Nitrobenzene is a nitro aromatic hydrocarbon used to produce aniline. Nitrobenzene is produced in a continuous process by the direct nitration of benzene. Nitrobenzene also is used in the manufacture of compounds including benzidine and guinoline, in the production of isocyanates, pesticides, and pharmaceuticals, and as а solvent in petroleum refining. Nitrobenzene has been detected in air and appears to volatilize from water and soil

### IJPBS |Volume 1| Issue 3 |JULY-SEPT |2011|231-239

The pure chemicals Toluene and Nitrobenzene were used as such without any purification. Measurement of Ultrasonic Velocity is generally made either by continuous wave method or by pulse methods. In the present continuous wave variable study, path interferometer is used. The ultrasonic velocity was measured using a multi variable frequency interferometer working at 1,3,5 MHz by standard procedure .The accuracy of ultrasonic velocitv determination in non-aqueous solutions is 0.001%

The constant temperature was maintained by circulating water from the thermostatically controlled (+ 0.1°C) water bath. The density at room temperature was measured using specific gravity bottle and single pan microbalance. The viscosity at different temperature was measured using Oswald's Viscometer and stop clock. Acoustical parameters were calculated using the measure values of velocity, viscosity and density. The values of ultrasonic velocity, viscosity, Adiabatic compressibility, Free volume, intermolecular free length, Rao's Constant, Internal pressure of Toluene in Nitrobenzene for various concentration (0.0 to 1.0) at different temperatures (303K, 308K, 313K, 318K and 323K) are given in Table 1 to Table 2.

#### Concentration Temperature Density Viscosity Velocity Adiabatic Compressibility In Ms<sup>-1</sup> In Kgm<sup>-3</sup> ŋ×10<sup>-3</sup>Nsm<sup>-2</sup> ×10<sup>-10</sup>m In K 0 303 1228 1680 2.1089 1.66 2.9911 308 1228 1.42 1650 313 1228 1.19 3.0462 1635 318 1228 0.95 1605 3.1611

| TADIE  | 1 |
|--------|---|
| TABLE: | т |

International Journal of Pharmacy and Biological Sciences (eISSN: 2230-7605)

Page 23

**MATERIALS AND METHODS** 

TRBS CITATION OF Pharmacy And Biggs

### Available Online through

### www.ijpbs.com

### IJPBS |Volume 1| Issue 3 |JULY-SEPT |2011|231-239

|     | 323 | 1228   | 0.82 | 1560 | 3.3462 |
|-----|-----|--------|------|------|--------|
|     | 303 | 1129   | 1.58 | 1635 | 3.3133 |
|     |     |        |      |      |        |
|     | 308 | 1129   | 1.37 | 1590 | 3.5035 |
| 0.2 | 313 | 1129   | 1.33 | 1545 | 3.7106 |
|     | 318 | 1129   | 0.90 | 1485 | 4.0166 |
|     | 323 | 1129   | 0.78 | 1455 | 4.1838 |
|     | 303 | 1092   | 1.52 | 1605 | 3.5549 |
|     | 308 | 1092   | 1.30 | 1545 | 3.8364 |
| 0.4 | 313 | 1092   | 1.09 | 1500 | 4.0700 |
|     | 318 | 1092   | 0.87 | 1455 | 4.3257 |
|     | 323 | 1092   | 0.75 | 1425 | 4.5097 |
|     | 303 | 1030   | 1.44 | 1575 | 3.9138 |
|     | 308 | 1030   | 1.23 | 1515 | 4.2299 |
| 0.6 | 313 | 1030   | 1.03 | 1470 | 4.4929 |
|     | 318 | 1030   | 0.82 | 1440 | 4.6821 |
|     | 323 | 1030   | 0.71 | 1410 | 4.8834 |
|     | 303 | 945.15 | 1.33 | 1530 | 4.5197 |
|     | 308 | 945.15 | 1.14 | 1485 | 4.7978 |
| 0.8 | 313 | 945.15 | 0.95 | 1440 | 5.1024 |
|     | 318 | 945.15 | 0.76 | 1410 | 5.3218 |
|     | 323 | 945.15 | 0.65 | 1380 | 5.5557 |
|     | 303 | 913.14 | 1.27 | 1485 | 4.9660 |
|     | 308 | 913.14 | 1.09 | 1425 | 5.3930 |
| 1.0 | 313 | 913.14 | 0.91 | 1380 | 5.7505 |
|     | 318 | 913.14 | 0.73 | 1365 | 5.8778 |
|     | 323 | 913.14 | 0.62 | 1350 | 6.0089 |



### Available Online through www.ijpbs.com

### IJPBS |Volume 1| Issue 3 |JULY-SEPT |2011|231-239

#### TABLE: 2

| Concentration | Temperature<br>In K | Inter molecular<br>Free length L <sub>F</sub> ×10 <sup>-10</sup> m | Free Volume<br>V <sub>F</sub> ×10 <sup>-9</sup> m <sup>3</sup> mol <sup>-1</sup> | Internal<br>Pressure π <sub>i</sub> ×10 <sup>-6</sup> pa | Rao's<br>Constant |
|---------------|---------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------|-------------------|
|               | 303                 | 0.3124                                                             | 4.9644                                                                           | 784.951                                                  | 116.956           |
|               | 308                 | 0.3481                                                             | 6.1074                                                                           | 604.182                                                  | 115.538           |
| 0             | 313                 | 0.3543                                                             | 7.8527                                                                           | 564.646                                                  | 115.189           |
|               | 318                 | 0.3638                                                             | 10.7075                                                                          | 517.328                                                  | 114.488           |
|               | 323                 | 0.3774                                                             | 12.7946                                                                          | 495.178                                                  | 113.418           |
|               | 303                 | 0.3633                                                             | 5.1289                                                                           | 595.845                                                  | 125.227           |
|               | 308                 | 0.3768                                                             | 5.8640                                                                           | 571.918                                                  | 124.079           |
| 0.2           | 313                 | 0.3910                                                             | 7.7895                                                                           | 535.476                                                  | 122.909           |
|               | 318                 | 0.4100                                                             | 10.3266                                                                          | 495.229                                                  | 121.313           |
|               | 323                 | 0.4219                                                             | 12.4133                                                                          | 473.085                                                  | 120.499           |
|               | 303                 | 0.3763                                                             | 5.2827                                                                           | 586.758                                                  | 128.617           |
|               | 308                 | 0.3942                                                             | 6.3079                                                                           | 553.072                                                  | 128.010           |
| 0.4           | 313                 | 0.2199                                                             | 7.8597                                                                           | 522.319                                                  | 125.777           |
|               | 318                 | 0.4255                                                             | 11.5074                                                                          | 467.333                                                  | 124.519           |
|               | 323                 | 0.4381                                                             | 13.8434                                                                          | 446.322                                                  | 123.666           |
|               | 303                 | 0.3948                                                             | 5.5648                                                                           | 545.796                                                  | 135.444           |
|               | 308                 | 0.4140                                                             | 6.6503                                                                           | 522.810                                                  | 133.720           |
| 0.6           | 313                 | 0.4302                                                             | 8.2947                                                                           | 493.573                                                  | 132.400           |
|               | 318                 | 0.4427                                                             | 11.3215                                                                          | 452.064                                                  | 131.498           |
|               | 323                 | 0.4558                                                             | 13.6151                                                                          | 431.787                                                  | 130.588           |
|               | 303                 | 0.4243                                                             | 5.9981                                                                           | 502.830                                                  | 146.125           |
|               | 308                 | 0.4409                                                             | 7.2274                                                                           | 480.328                                                  | 144.692           |
| 0.8           | 313                 | 0.4585                                                             | 9.0721                                                                           | 452.505                                                  | 143.230           |
|               | 318                 | 0.4719                                                             | 12.2842                                                                          | 415.559                                                  | 142.236           |

 $_{\rm Page}234$ 

Availal

## Available Online through

www.ijpbs.com

### IJPBS |Volume 1| Issue 3 |JULY-SEPT |2011|231-239

|     | 323 | 0.4863 | 15.0383 | 394.564 | 141.233 |
|-----|-----|--------|---------|---------|---------|
|     | 303 | 0.4448 | 6.1652  | 486.272 | 150.070 |
|     | 308 | 0.4675 | 7.2886  | 467.470 | 148.038 |
| 1.0 | 313 | 0.4868 | 9.1058  | 441.086 | 146.479 |
|     | 318 | 0.4960 | 12.4674 | 403.571 | 145.951 |
|     | 323 | 0.5057 | 15.6666 | 379.865 | 145.420 |

### **Theory and Calculations**

Using the measured data, the acoustical parameters have been calculated

### Adiabatic Compressibility $\beta = 1 / U^2 \rho --- (1)$

Intermolecular free length  $(L_f)$  has been calculated from relation,

 $LT_{f} = K_{T} VB$  ------ (2)

Where,  $K_{\text{T}}$  is a temperature dependent constant.

Free volume  $(V_f)$  has been calculated from relation,

V<sub>f</sub>= (M<sub>eff</sub>U / Kη) -----(3)

Where  $M_{eff}$  is the effective molecular weight  $(M_{eff} = \Sigma m i f_i x_i)$ , in which  $m_i$  and  $x_i$  are the molecular weight and the mole fraction of the individual constituents respectively). K is a temperature independent constant which is equal to  $4.28 \times 10^9$  for all liquids.

The internal pressure  $(\pi_i)$  can be found out as

### Π= bRT $(K\eta/U)^{1/2} (\rho^{2/3}/M_{eff}^{7/6})$ ------(4)

K is a constant, T the absolute temperature,  $\eta$  the viscosity in Nsm<sup>-2</sup>, U the ultrasonic velocity in ms<sup>-1</sup>,  $\rho$  the density in Kgm<sup>-3</sup>, M<sub>eff</sub> the effective molecular weight.

### **RESULTS AND DISCUSSION:**

Ultrasonic velocity measurements in liquids and liquid mixtures were carried out by many researchers [1-24]. In our present work, ultrasonic velocity on non-aqueous solutions of Toluene in Nitrobenzene at different concentration and temperature were studied. The concentration ranges from 0.0 to 1.0 were prepared by adding known weight of the Toluene in Nitrobenzene.

From **figure 1** we have concluded that the value of density decreases with the increasing value of concentration that means the morality of Toluene in Nitrobenzene decreases with the increasing value of density. [5,6]

**Figure 2** shows the variation of viscosity with concentration and temperature. It is almost reflected the behavior of the variation of velocities as discussed [15-19] it is observed that the increase of absorption and viscosity with concentration and their decrease with increase in temperature.

Figure 3 has been drawn for various velocities, which are varying with different concentration and temperature. From the graph it is observed that the velocities are decreases value with the increasing of concentration.[9,23,24] found that the increase in Ultrasonic velocity at higher concentrations may be due to polymerpolymer interaction and decrease in velocity with increase in temperature may be due to the weakening of intermolecular forces



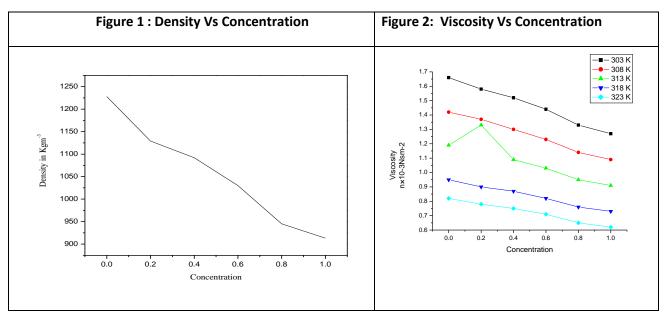


### Available Online through www.ijpbs.com

between the molecules. It was concluded that the non-linear variations of Rao's constant with concentration of one of the components generally indicates strong association between the molecules. [11,12,13]

**Figure 4** describes the variation of adiabatic Compressibility with different values of temperature as well as concentration. It was found that adiabatic compressibility increases with the increasing value of concentration [6,10,14] **S.K.Kor<sup>14</sup>**et al was concluded that the velocity in general decreases with increase of temperature irrespective of its molecular weight and concentration.

From **figure 5** describes the variation of Rao's Constant with various temperature and concentration. Since Rao's Constant is independent of temperature there is no appreciable variation of Rao's Contant with the effect of temperature. However it slowly increases with the increasing value of concentration.[1,2,3,4,7]


From **figure 6** describes the variation if free length for different value of temperature and

### IJPBS |Volume 1| Issue 3 |JULY-SEPT |2011|231-239

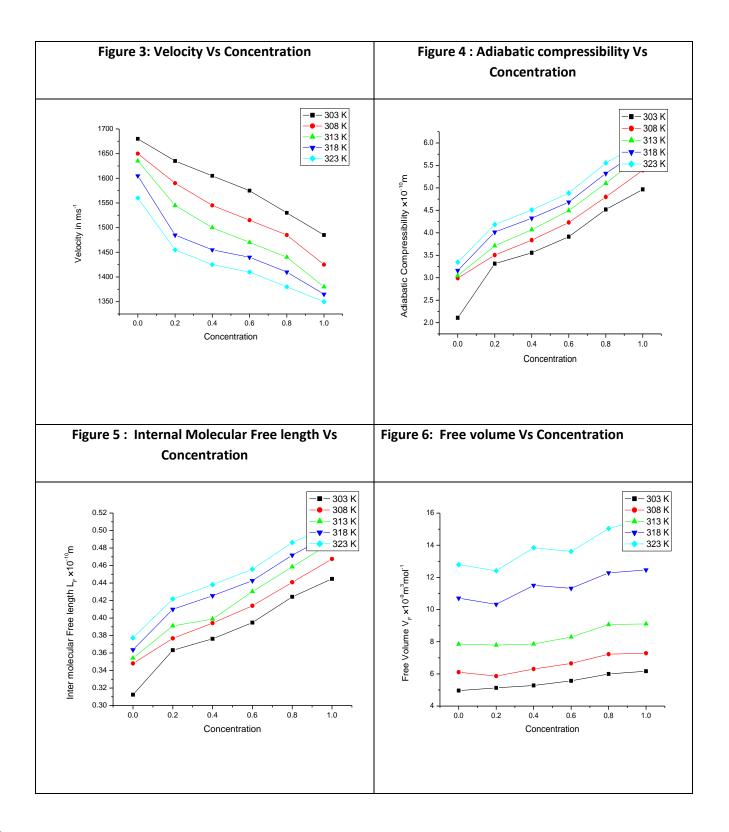
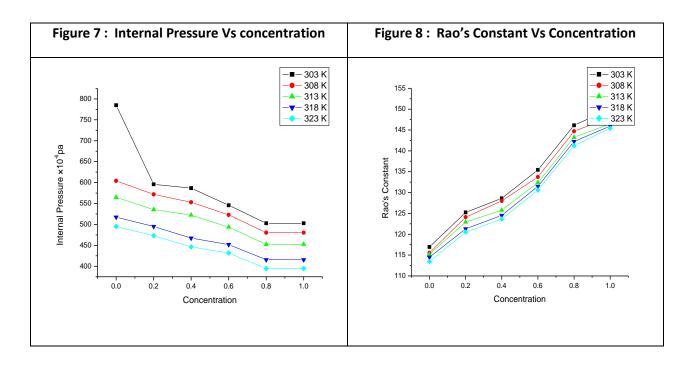

concentration. Since the free length  $L_f$  is proportional to the adiabatic compressibility  $\beta_{ad}$  the same trend of variation similar to the variation of adiabatic compressibility has repeated in this graph.

Figure 7 the graph has been plotted for the variation of free volume at the various values of concentration and temperature. It is also that the free volume increases with increasing the value of concentration.[11] The absorption decreases almost linearly with increasing temperature at a given concentration and increases with concentration at a given temperatures. The velocity is a linearly increasing function of the temperature and also increases with concentration at a given In addition, the viscosity temperature. decreases linearly with temperature and increase with concentration. [20-22]


**Figure 8** describes the variation of internal pressure with various temperature and concentration. It is observed that internal pressure is decreases with the increasing value of concentration.











### **CONCLUSION:**

Ultrasonic studies have been carried out in the solutions of Toluene in Nitrobenzene at five different temperatures (namely 303k, 308k, 313k, 318 and 323k) for the concentration ranging from 0.0 to 1.0 in temperature of 0.2. There is an interaction between the solute (Toluene) and solvent (Nitro Benzene) molecules. At lower concentrations in the interaction are very less and the interaction is mostly between the solute and the solvent molecules. At higher concentration, the solute molecules are pushed closer to the solvent molecules, there by producing hydrogen bonds. The trend of increase in adiabatic compressibility and free length with increase of solute concentration further concludes the possibility of molecular interaction. This interaction indicates that there is a possibility of some complex formation such as hydrogen in bond the present system. As the temperature increases, the hydrogen bonds are broken up due to thermal agitations and hence the ultrasonic velocity decreases.

### ACKNOWLEDGEMENT:

The authors are highly thankful to Prof.Vel R. Rangarajan, Chairman, Vel Group of Institutions, Avadi. Chennai-62 and Dr.K.Siddappa Naidu, Principal, Vel Tech Multi Tech Dr.Rangarajan Dr.Sakunthala Engg.College, Avadi, Chennai-62 for their kind attention and constant encouragement towards this project work.

### **REFERENCES:**

- 1. I.G. Mikhailov, J.Struct. Chem, 9, 332, (1968)
- Donald L.Lamberson, Can.J. cham, 49, 611 (1971)
- 3. N.G. Gereeze, Trans. Faraday Soc, 62, 112 (1966)
- 4. R.P.Singh, T.N.Sorivastava, B.Swaroop, Ind. J.Pure Appl. Phys. 21.67 (1983)



Available Online through www.ijpbs.com

- 5. R.A.Pethrick and J.D. Pandey, Acustica, 39, 200 (1978)
- R.A. Pethrick and V.Tiwari, Z.Phys. chem., 262, 53 (1981)
- G.V.Reddy, Fluid Phase Equilibria, 22, 289 (1985)
- 8. R.P.Singh and S.S.Bhatti, Acoust. Lett, 8, 84 (1984)
- 9. R.P.Singh and T.N.Srivastava, Indian.J.Chem. Soct, 23,227 (1984)
- 10. A.M.North, Fluid Phase Equilibria, 22,289 (1985)
- 11. A.Abubaker, RFort, Trans. Faraday. Soc, 61,2102 (1965)
- 12. R.A. Pethrick. Indian J.Chem, 10,713 (1972)
- 13. K. Samel, J. Amer, Chem. Soc, 87, 1838 (1965)
- 14. S.K. Kor, B.K. Singh, S.C, Deorani, Indian. J. Pore apple. Phy, 10,405 (1972)

### IJPBS |Volume 1| Issue 3 |JULY-SEPT |2011|231-239

- 15. S.K. Hasson and J. Nath, J.Chem. Soc. Faraday. Trans, 86, 645 (1990)
- 16. S. Bayachi Acustica, 10,316 (1960)
- 17. P.Spickler, Indian J.Chem, 23, 4555 (1984)
- 18. S.K. Hassun, Indian J.Chem, 23, 455 (1984)
- 19. P. Spickler, J.Acoust. Soc. India, 10, 724 (1982)
- 20. C.Rakkappan, Ph.D THESIS, ANNAMALAI UNIVERSITY, (1990)
- 21. R. Esquivel and Sirvent, J.Phy.Chem, 74, 1067 (1970)
- 22. R.Esquivel and Sirvent, J.Trans. Faraday. Soc, 58, 2352 (1962)
- 23. B. Sundaresan, Canadian J.Chem, 52, 8 (1974)
- 24. B. Sundaresan, J. Account. Soc. India, 4, 151 (1973)



\*Address for the Correspondence: M.Thirunavukkarasu\* N.Kanagathara Vel Tech Multi Tech Dr.Rangarajan Dr.Sakunthala Engg.College, Avadi, Chennai-62 E.mail: thiruarasu80@gmail.com