

International Journal of Pharmacy and Biological Sciences ISSN: 2321-3272 (Print), ISSN: 2230-7605 (Online)

IJPBS™ | Volume 8 | Issue 3 | JUL-SEPT | 2018 | 536-545

Research Article | Pharmaceutical Sciences | Open Access | MCI Approved|

| ज्ञान-विज्ञान विमुक्तये |UGC Approved Journal|

STABILITY INDICATING RP-HPLC METHOD FOR DETERMINATION OF DROTAVERINE HYDROCHLORIDE IN BULK AND ITS FORMULATION

S. K. Panda^{1*}, B. S. Khuntia¹, R. R. Sarangi¹, S. K. Sahoo¹ and Dhiraj Kumar²

¹Department of Pharmaceutical Analysis and Quality Assurance, Royal College of Pharmacy and Health

Sciences, Berhampur-760 002, Orissa, India

²Guru Nanak Institutions Technical Campus - School of Pharmacy, Ibrahimpattnam, Hyderabad-501506

*Corresponding Author Email: pandask@yahoo.com

ABSTRACT

A simple, rapid and accurate stability indicating RP-HPLC method was developed for the determination of Drotaverine Hydrochloride in pure and tablet form. The method was carried out using Phenomenex ODS C-18 column (250 x 4.6 mm, packed with 5 micron) using Acetonitrile and Water (50:50) with 0.05% glacial acetic acid as the mobile phase with detection at 357 nm and a flow rate of 0.5 ml/min. The retention time was found to be 4.260 min. The responses were linear in concentrations range of 10-120 µg/ml with correlation coefficient of 0.999. The percentage recovery was found to be between 98.01-101.69% and %RSD from recovery studies was found to be less than 1. The drug was subjected to acid, alkali and neutral hydrolysis, oxidation, dry heat and photolytic degradation. The degradation studies indicated the drug to be susceptible to acid and alkali hydrolysis. The method was validated according to the ICH guidelines with respect to specificity, linearity, accuracy, precision, ruggedness and robustness and can be successfully applied for determination determination of these drugs in commercial tablets.

KEY WORDS

Drotaverine Hydrochloride, RP-HPLC, Validation, Stability, Degradation.

INTRODUCTION:

Drotaverine Hydrochloride is chemically 1-[(3,4-diethoxyphenyl)-methylene]-6,7-diethoxy-1,2,3,4-tetrahydroisoquinoline hydrochloride (Fig. 1) [8]. It is is an antispasmodic drug and inhibits phosphodiesterases

hydrolyzing cAMP, thereby increasing cAMP concentration. It is structurally related to papaverine and it is a selective inhibitor of phosphodiesterase 4. In addition, it has no anticholinergic effects.

D07879

Drotaverine HCI

It is not official in any of the pharmacopoeia but is listed in the Merck Index and Martindale: The complete drug

reference. Literature survey revealed the estimation of Drotaverine Hydrochloride by several techniques such

as simultaneous estimation by HPLC^[1-3], determination of Drotaverine Hydrochloride in human plasma by HPLC^[4], by RP-HPLC techniques^[5], quantitation of Drotaverine by HPLC^[6] and stability study by HPLC^[7]. The focus of present study was to develop and validate a rapid, stable and economic RP-HPLC method for the estimation of Drotaverine Hydrochloride in bulk and its formulation.

MATERIALS AND METHODS

Chemicals & Reagents:

Analytically pure Drotaverine Hydrochloride was obtained as a gift sample from Khandelwal Remedies, Mumbai, India. Commercial tablet formulations were purchased from the local market. All chemicals and reagents used were of AR/HPLC grade, obtained from Merck.

Instrument:

A High-Performance Liquid Chromatographic system, with Spinchrom data handling system (Shimadzu-LC 2010) with Analytical Column- Phenomenex ODS C18 (250 X 4.6 mm, 5 μ particle size), equipped with quaternary gradient pump, 2010C UV-VIS detector in isocratic mode was used for the analysis. Calibrated electronic single pan balance (Sigma 200/A Super), pH Meter (LABINDIA), PCi (3.5L) Ultrasonicator were also used during the analysis.

Chromatographic Conditions:

The mobile phase constituted of degassed mixture of Acetonitrile and Water (50:50) with 0.05% glacial acetic acid. The injected volume was 20 μ l with a flow rate of 0.5 ml/min. Detection was carried out at 357 nm with a run time set at 10 minutes.

Preparation of Mobile Phase and Standard Stock Solution:

The mobile phase was prepared by mixing 500 ml of acetonitrile with 500 ml of water to get the proportion of 50:50 v/v and finally 0.05% v/v glacial acetic acid. The solution was sonicated for 15 minutes and filtered using 0.45-micron membrane filter. Standard stock solution of Drotaverine Hydrochloride was prepared by dissolving 10 mg of Drotaverine Hydrochloride in 10 ml of mobile phase to get a concentration of 1000 mg/ml. It was further diluted to get a concentration of 100 μ g/ml.

Calibration Curve for Drotaverine Hydrochloride:

Appropriate aliquots of standard stock solution were taken in different 10 ml volumetric flasks and diluted up to the mark with mobile phase to obtain final concentrations of 10-120 $\mu g/ml$ of Drotaverine Hydrochloride respectively. The solutions were injected using a 20 μl fixed loop system and chromatograms were recorded.

Assay of marketed Formulations:

Twenty tablets of Drotin (manufactured by Martin & Harris Lab.) were accurately weighed and finely powdered and mixed. The powder equivalent to the average weight of one tablet was transferred into a 100 ml volumetric flask. The drug was extracted four times by adding solvent in portion, 20 ml each and then volume was made up to the mark using the same solvent. After appropriate dilution (within their linearity range), peak area of the sample solutions were recorded. The amount of Drotaverine Hydrochloride per tablet was calculated using the calibration curve.

Method Validation: [9]

- **1. Linearity:** Various working standard solutions were prepared and the linearity range was calculated from the observation.
- **2. Accuracy:** The accuracy of the proposed method was tested by recovery studies at 80%, 100%, and 120% by adding a known amount of pure drug to the preanalyzed formulation of concentration 30 μ g/ml.
- **3. Precision:** The precision of the proposed method was ascertained by actual determination of 6 replicates of a fixed concentration of the drug (30 μ g/ml) within the Beer's range and finding out the average peak area by the proposed method.
- **4. Sensitivity:** The sensitivity of the method was determined with respect to LOD and LOQ. The LOD and LOQ were separately determined based on the standard calibration curve using the formula LOD = $3 \times S.D/S$ and LOQ = $10 \times S.D/S$, where, S.D is the standard deviation of the y- intercept of regression line and S is the average slope of the calibration curve.
- 5. Intraday Assay and Interday Assay: The intraday assay and interday assay of the proposed method were ascertained by actual determination of 8 replicates of a fixed concentration of the drug ($30 \,\mu\text{g/ml}$) and finding out the average peak area by the proposed method at 3 different time period of the same day and on three different days respectively.

Degradation Studies: [10]

Degradation in Acidic Condition: Ten micrograms of the Drotaverine Hydrochloride was weighed accurately and transferred in to cleaned 10 ml volumetric flask. The content of the volumetric flask was dissolved in 10 ml of

1N HCl. Then the volumetric flask was subjected to heat on water bath at 100°C. Samples were prepared for different time intervals, such as 0 hr, 30 min., 1 hr, 2 hr, 4 hr and 6 hr. The sample solutions were then diluted to prepare 50 μ g/ml with solvent acetonitrile and water (50:50) with 0.05% glacial acetic acid and sonicated for 10 min. These were then filtered through 0.22 μ m filter and 20 μ l were injected into HPLC. The obtained chromatograms were observed for any degradation undergone during the time.

Degradation in Alkaline Condition: Ten micrograms of Drotaverine Hydrochloride was weighed accurately and transferred into cleaned 10 ml volumetric flask. The content of the volumetric flask was dissolved in 10 ml of 1N NaOH. Then the volumetric flask was subjected to heat on water bath at 100° C. Samples were prepared for different time intervals, such as 0 hr, 30 min, 1 hr, 2 hr, 4 hr and 6 hr. The sample solutions were then diluted to prepare 50 µg/ml with solvent acetonitrile and water (50:50) with 0.05% glacial acetic acid and sonicated for 10 min. These were then filtered through 0.22 µm filter and 20 µl were injected into HPLC. The obtained chromatograms were observed for any degradation undergone during the time.

Degradation in Neutral Condition: Ten micrograms of Drotaverine Hydrochloride was weighed accurately and transferred in to cleaned 10 ml volumetric flask. The content of the volumetric flask was dissolved in 10 ml of distilled water. Then the volumetric flask was subjected to heat on water bath at 100° C. Samples were prepared for different time intervals, such as 0 hr, 30 min., 1 hr, 2 hr, 4 hr and 6 hr. At different time interval, different sample solutions were taken out. The sample solutions were then diluted to prepare 50 µg/ml with acetonitrile and water (50:50) with 0.05% glacial acetic acid and sonicated for 5 min. These were then filtered through 0.22 µm filter and 20 µl was injected into HPLC. The obtained chromatograms were observed for any degradation undergone during the time.

Thermolytic Degradation: For thermal degradation, 100 mg of Drotaverine Hydrochloride was weighed accurately and transferred into cleaned petridish. Then the petridish was placed in the incubator at 70°C. Samples were drawn at different time intervals. From these stock solutions of 1000 μ g/ml were prepared with solvent acetonitrile and water (50:50) with 0.05% glacial acetic acid, from which 50 μ g/ml of working solutions

were prepared. These were sonicated and filtered through 0.22 μ m filter and 20 μ l of the samples were injected into HPLC. The reports were analyzed for any degradation that has under gone due to heat.

Oxidative Degradation: For oxidation, 10 mg of Drotaverine Hydrochloride was weighed accurately and transferred in to cleaned 10ml volumetric flask. The content of the volumetric flask was dissolved in 10ml H_2O_2 (6%). Then the volumetric flask was subjected to heat on water bath at $100^{\circ}C$. Samples were prepared for different time intervals, such as 0 hr, 30 min., 1 hr, 2 hr, 4 hr, 6 hr and 12 hr. The sample solutions were then diluted to prepare 50 μ g/ml with solvent acetonitrile and water (50:50) with 0.05% glacial acetic acid and sonicated for 5 min. These were then filtered through 0.22 μ m filter and 20 μ l were injected into HPLC. The obtained chromatograms were observed for any degradation undergone during the time.

Photolytic Degradation: For Photolysis, 100 mg of Drotaverine Hydrochloride was weighed accurately and transferred into cleaned petridish. Then the petridish was placed under direct sun light at day time keeping the cover of petridish closed and left for degradation. At different time of interval 10 mg of sample was taken. From these stock solutions of 1000 μ g/ml were prepared and were sonicated for 5 min and diluted to prepare 50 μ g/ml with solvent acetonitrile and water (50:50) having 0.05% glacial acetic acid. Then filtered through 0.22 μ m filter and injected into HPLC. The obtained chromatograms were observed for any degradation undergone during the time.

UV Degradation: For UV degradation, 100 mg of Drotaverine Hydrochloride was weighed accurately and transferred into cleaned petridish. Then the petridish was placed under UV chamber keeping the petridish at 30 cm distance from the UV lamp. The covers of the petridish was removed and left for degradation. At different time of intervals, the UV lamp was switched off and 10 mg of sample was taken. From these stock solutions of 1000 $\mu g/ml$ were prepared with solvent acetonitrile and water (50:50) with 0.05% glacial acetic acid, from which 50 $\mu g/ml$ of working solution were prepared. Then these were sonicated and filtered through 0.22 μm filter and 20 μl of the samples were injected into HPLC. The reports were analyzed for any degradation that has under gone due to UV light.

RESULTS AND DISCUSSION

Calibration Curve:

The peak areas for the different concentrations (10-120 $\mu g/ml$) were recorded at 357 nm. The calibration curve

(Fig. 2) data, and the HPLC spectra (Fig. 3) is shown in Table 1 and the assay results of the marketed formulations is shown in Table 2.

$$H_3C$$
 O CH_3 HCI

Figure 1: Structure of Drotaverine Hydrochloride

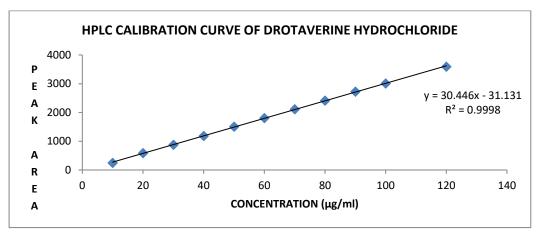


Figure 2: Calibration Curve of Drotaverine Hydrochloride

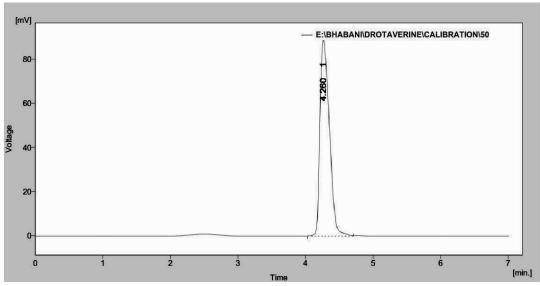


Figure 3: RP-HPLC Spectra of Drotaverine Hydrochloride

Table 1: Calibration Curve Table of Drotaverine Hydrochloride

Conc. (mcg/ml)	Mean Peak Area (mV.s) (n=4)	Statistical Analysis
10	245.257	
20	587.166	
30	874.355	
40	1185.015	
50	1503.933	Slope= 30.44
60	1807.474	Intercept= 31.13
70	2114.216	$r^2 = 0.999$
80	2413.260	
90	2722.394	
100	3009.565	
120	3593.410	

Table 2: Assay Result of The Marketed Formulation by The Proposed Method

Formulation	Label claimed	Observed Amount	% Recovery	
Drotin	50 mg	49.79 mg	99.58	

Accuracy:

The percentage recovery was found to be in the range of 98.01% and 101.69% as shown in Table 3.

Table 3: Accuracy Readings Of Drotaverine Hydrochloride By RP-HPLC

Sample ID	Concentration(µg/ml)		% Recovery of Pure Drug	Statistical Analysis	
Sample 1D	Pure Drug	Formulation	% Recovery of Fure Drug	Statistical Allalysis	
S ₁ : 80%	24	30	98.18	Mean= 98.50	
S ₂ : 80%	24	30	99.32	SD= 0.712	
S ₂ : 80%	24	30	98.01	%RSD= 0.723	
S ₄ : 100%	30	30	99.54	Mean= 99.78	
S ₅ : 100%	30	30	100.22	SD= 0.376	
S ₆ : 100%	30	30	99.60	%RSD= 0.377	
S _{7:} 120%	36	30	97.83	Mean= 99.80	
S _{8:} 120%	36	30	99.47	SD= 1.164	
S _{9:} 120%	36	30	101.69	%RSD= 1.167	

Precision:

From Table 4, the %RSD for precision was found to be 0.602.

Table 4: Precision Results for Drotaverine Hydrochloride By RP-HPLC

Concentration (µg/ml)	Injection	Area (mV.s)	Cal. Amount (µg/ml)	Statistical Analysis
30	1	874.355	29.75	
30	2	880.863	29.96	Mann- 20 04
30	3	875.315	29.78	Mean= 29.94
30	4	879.560	2992	CD - 0 100
30	5	889.934	30.26	SD= 0.180
30	6	884.557	30.08	%RSD= 0.602
30	7	874.691	29.76	/0 N3D- 0.002
30	8	882.992	30.03	

Sensitivity:

The LOD was found to be 1.31 $\mu g/ml$ and the LOQ was found to be 4.53 $\mu g/ml$ at 357 nm, respectively.

Intraday and Interday Assay:

The %RSD for Intraday and Interday Assay were found to be 0.488 and 0.333 respectively. Low values of %RSD

indicate that the proposed method is accurate. The data is shown in Table 5 and 6.

Table 5: Intraday Precision Reading of Drotaverine Hydrochloride By RP-HPLC

Concentration (μg/ml)	Injection	Area 1 (mV.s)	Area 2 (mV.s)	Area 3 (mV.s)	Mean %RSD
30	1	874.355	877.612	883.277	_
30	2	885.415	874.357	879.634	
30	3	873.681	876.560	884.993	
30	4	882.865	886.339	880.325	
30	5	877.452	883.657	878.390	0.400
30	6	879.571	875.982	886.572	0.488
30	7	876.212	878.691	875.261	
30	8	871.931	885.215	876.122	
Avg. Cal. Amount (ւg/ml)	29.85	29.93	29.95	
% RSD		0.514	0.504	0.447	

Table 6: Interday Precision Reading of Drotaverine Hydrochloride By RP-HPLC

Concentration (μg/ml)	Injection	Day 1 (Area)	Day 2 (Area)	Day 3 (Area)	Average %RSD
40	1	1185.085	1182.046	1185.846	
40	2	1188.323	1180.551	1180.337	
40	3	1181.89	1179.438	1184.693	
40	4	1187.609	1186.320	1179.214	
40	5	1178.728	1184.879	1187.078	0.333
40	6	1185.376	1190.567	1190.585	0.333
40	7	1182.982	1188.488	1181.409	
40	8	1190.399	1183.600	1191.106	
Avg. Cal. Amount (μ	ιg/ml)	39.95	39.93	39.95	
%RSD		0.311	0.317	0.370	

Robustness:

To evaluate robustness of the developed method, deliberate variations were made in the method

parameters such as the flow rate of the mobile phase and ratio of mobile phase. The results are presented in Table 7.

Table 7: Robustness of The Proposed Method

Factor	Level	Mean Area (mV.s) (n=5)	Mean Cal. Amount (μg/ml)	%RSD
рН	3.58	1186.405	39.99	0.155
	4.38	1186.100	39.98	0.143
Flow rate (ml/min)	0.4	1187.014	40.01	0.142
	0.6	1186.405	39.99	0.155

Ruggedness:

To evaluate ruggedness of the developed method, deliberate variations were made in the method

parameters such as analysts and temperature of the system. The results are presented in Table 8.

Factor	Level	Mean Area (mV.s) (n=5)	Mean Cal. Amount (μg/ml)	%RSD
Analyst	1	1184.882	39.94	0.209
	2	1183.969	39.91	0.164
Temperature (°C)	Room Temp.	1185.796	39.97	0.099
	18	1184.578	39.93	0.143

Stability Results:

The results obtained in acidic degradation, alkaline degradation, neutral degradation, thermal degradation, oxidative degradation, photolytic degradation and UV

degradation are depicted as chromatograms and given in Figure 4, 5, 6, 7, 8, 9 and 10, respectively and represented in Table 9.

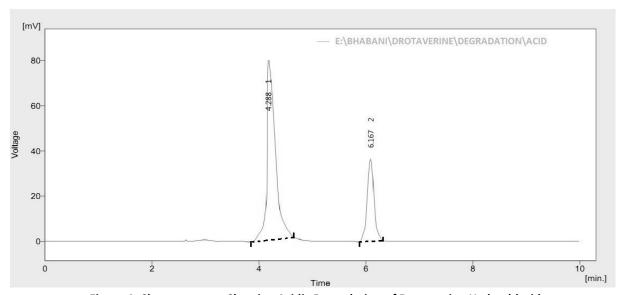


Figure 4: Chromatogram Showing Acidic Degradation of Drotaverine Hydrochloride

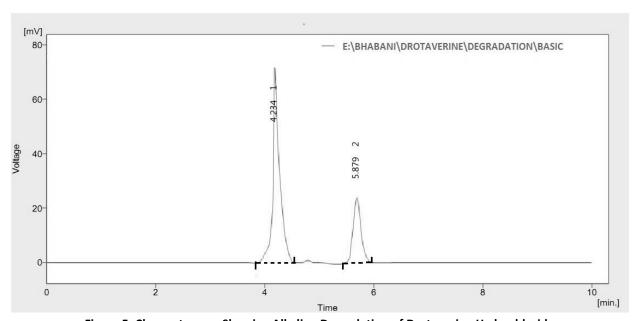


Figure 5: Chromatogram Showing Alkaline Degradation of Drotaverine Hydrochloride

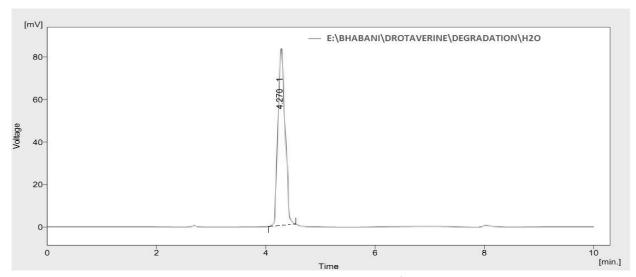


Figure 6: Chromatogram Showing Neutral Degradation of Drotaverine Hydrochloride

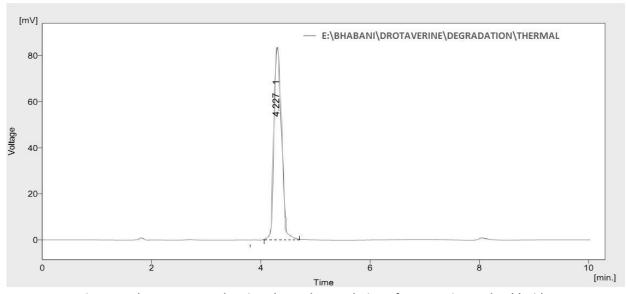


Figure 7: Chromatogram Showing Thermal Degradation of Drotaverine Hydrochloride

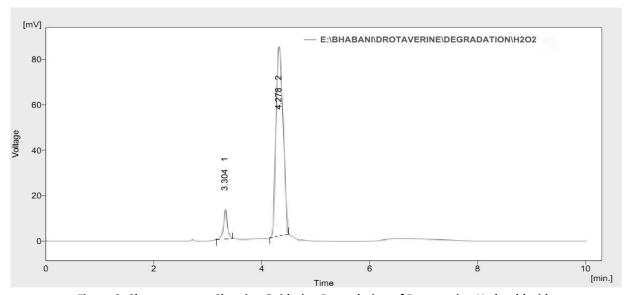


Figure 8: Chromatogram Showing Oxidative Degradation of Drotaverine Hydrochloride

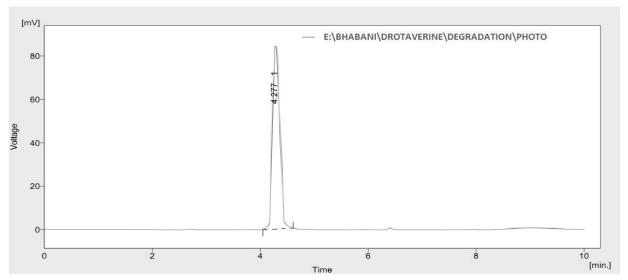


Figure 9: Chromatogram Showing Photolytic Degradation of Drotaverine Hydrochloride

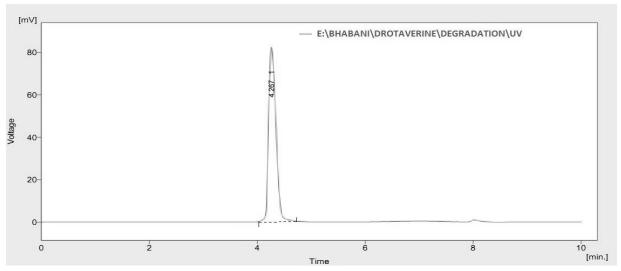


Figure 10: Chromatogram Showing UV Degradation of Drotaverine Hydrochloride

Table 9: Stability Study Results of Drotaverine Hydrochloride

Conditions	Cons (ug/ml)	Time	Peak Area (mV.s)		
	Conc. (µg/ml)	Time	Before Degradation	After Degradation	% Degraded
Acidic Degradation	50	6 hours	1503.933	1235.654	16.78
Alkaline Degradation	50	6 hours	1503.933	1123.154	24.18
Neutral Degradation	50	6 hours	1503.933	1501.202	0.18
Thermolytic	50	1 month	1503.933	1496.250	0.51
Degradation	30	1	2000.000		0.51
Oxidative Degradation	50	12 hours	1503.933	1499.449	0.30
Photolytic Degradation	50	1 month	1503.933	1498.815	0.34
UV Degradation	50	48 hours	1503.933	1503.048	0.59

CONCLUSION

The proposed RP-HPLC method enables the determination of Drotaverine Hydrochloride because of good separation of chromatographic peaks. The method can be used successfully for the analysis of Drotaverine

Hydrochloride in tablet dosage forms. Moreover, the proposed test procedure does not require any complicated mobile phase and it is simple isocratic method. The proposed method for the estimation of Drotaverine Hydrochloride can be routinely performed

for its accurate and precise quantification even in presence of the degradation as the t_R of all degradants in different conditions differ significantly.

ACKNOWLEDGEMENTS

The authors are thankful to the authorities of Department of Pharmaceutical Analysis and Quality Assurance, Royal College of Pharmacy and Health Sciences, Berhampur for providing necessary requirements to carry out this research work and also to Khandelwal Remedies, Mumbai, India for providing gift sample of Drotaverine Hydrochloride.

REFERENCES

- Patel JD, Patel BA, Vaghela VM, Patel LJ, Patel PU. RP-HPLC method for the simultaneous determination of mefenamic acid and drotaverine hydrochloride in tablet dosage form. Int J Pharm Res 2009;1(4):35-39.
- Sharma R, Panigrahi D. Development and validation of an RP-HPLC method for simultaneous analysis of drotaverine and omeprazole in a tablet dosage form. Acta Chromatogr 2008;20(3):439-50.
- Shaikh KA, Patil SD. Stability indicating rapid RP-HPLC method for the determination of drotaverine hydrochloride, domperidone and paracetamol in

Received:04.05.18, Accepted: 07.06.18, Published:01.07.2018

- pharmaceutical dosage forms. Sch Res Lib- Der. Pharmacia Lettre 2010;2(4):355-64.
- Bolagi OO, Onyeji CO, Ogungbamila FO, Ogunbona FA, Ogunlana EO. High-performance liquid chromatographic method for the determination of drotaverine in human plasma and urine. J Chromatogr 1993;622(1):93-97.
- Permanand DC, Senthilkumar KL. Simultaneous estimation of mefenamic acid and drotaverine HCl in combined dosage form by RP-HPLC method and validation of the developed method. Sch Res Lib- Der. Pharm Chemica 2010;2(5):170-77.
- Devivelkar PP, Bari SB. High performance liquid chromatographic estimation of drotaverine hydrochloride and mefenamic acid in human plasma. Iranian J Pharm Res 2009;8(3):209-15.
- Azhlwar S, Ravi TK. Stability indicating HPLC method for simultaneous determination of drotaverine and aceclofenac. Int J Pharm Sci 2011;3(1):245-50.
- Budavari S. The Merck Index An Encyclopedia of Chemicals, Drugs and Biologicals, 14th edition. USA, White House Station, 2006;585.
- ICH, Q2B, Validation of Chromatographic Methods, in: Proceedings of the International Conference on Harmonization, Geneva, November, 1994.
- ICH, Q1AR2, Stability Testing of New Drug Substances and Products, in: Proceedings of the International Conference on Harmonization, Geneva, August, 2001.

*Corresponding Author: Susanta Kumar Panda

Email: pandask@yahoo.com