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ABSTRACT  
The flow of blood in two-dimensional through the constricted stenosed artery is investigated in this paper. 

Considered the problem of blood flow in an artery in the presence of multi-irregular shape stenosis. Blood is 

considered a Newtonian fluid and it is characterized by the generalized form of Navier-Stokes equation. 

Atherosclerotic plaque can cause severe stenosis in the artery lumen. If a stenosis is present in an artery the 

normal blood flow is disturbed. A linear approximation of Navies-Stokes equation has been solved with the help of 

boundary conditions and the results are shown graphically for different flow characteristics. It is found that wall 

shear stress is increased as the height of stenosis increases. Wall shear stress is increased with axial axis for 

increasing values of stenosis shape parameter, axial velocity decreases within the stenotic region, the volumetric 

flow rate and other flow characteristics of blood have been observed. 
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INTRODUCTION 

Atherosclerosis is the major cause of heart attack and 

stroke. This disease causes a ongoing stenosis of the 

lumen and hardening of the artery wall because of 

accumulation of lipids in the intima[19]. The 

successive build-up of deposits in the arterial wall 

may form a plaque that protrudes in to the lumen and 

restricts the blood flow. If the carotid artery (which 

supplies blood to the brain) is affected then it may 

cause stroke, when the coronary artery (which 

supplies blood to the heart) is affected, one may 

suffer from a heart attack [1,2]. There are also 

corresponding changes in the forces (shear and 

normal stresses) exerted by the flowing blood on the 

plaque surface. The abnormal narrowing in a blood 

vessel is caused by stenosis. Coronary artery disease 

is most rare type of heart disease and also causes 

death. When fatty deposits build up inside the 

coronary artery then stenosis builds up, it narrows 

the arteries and reduces the amount of blood flow 

that enter into the heart. Investigation of the blood 

flow in a multi-irregular shape stenosed geometry is 

of our interest because it plays important roles in 

human vascular diseases. V. P. Srivastava, Shailesh 

Mishra [11] studied the effects of an overlapping 

stenosis on non Newtonian blood flow characteristics 

in a narrow artery. Othman Smadi et al [8] suggested 

heat transfer and fluid flow analysis of blood flow 

through multi stenosis arteries with viscous 

dissipation effect.  Daniel N. Riahi, Ranadhir Roy, Sam 

Cavazos[3] investigated arterial blood flow in the 

presence of an overlapping stenosis and found the 

effects of the hematocrit and constriction due the red 

cells–plasma combination of the variable blood 

viscosity and the height of the stenosis on these 

quantities. Rekha Bali, Usha Awasthi[5] investigated 
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the effect of magnetic field, height of stenosis, 

parameter determin- ing the shape of the stenosis on 

velocity field, volumetric flow rate in stenotic region 

and wall shear stress at surface of stenosis are 

obtained and shown graphically. S. Mukhopadhyay, G. 

C. Layek[6] demonstrate that the flow resistance 

decreases as the shape of a smooth stenosis changes 

and maximum resistance is attained in case of a 

symmetric stenosis. 

We propose to study the effect of multi irregular 

shape stenosis on the flow of blood, when blood is 

considered as a Newtonian fluid. The aim of the 

present analysis is to study the flow characteristics of 

blood in a multi-irregular shape stenosed artery. Here 

we have taken a new model of stenosed artery. The 

analytical expression for velocity, volumetric flow 

rate, pressure gradient and the wall shear stress have 

been obtained. The numerical solutions for pressure 

gradient and the wall shear stress have been shown 

graphically. 

 

MATHEMATICAL MODEL: 

Let us consider the flow of blood in a tube having 

axisymmetric multi-irregular shape stenosis. It is 

assumed that blood is an incompressible fluid. Two 

different shapes of stenosis have been taken into 

account. Consider (r, θ, z) be the cylindrical polar 

coordinates with the z-axis along the axis of symmetry 

of the tube,  z and r  be the axial and the radial 

velocity components, respectively, p the pressure,  ρ  

the density, and  μ denotes the kinematic viscosity of 

the fluid.  The distance of the starting position of the 

stenosis from the radial axis is 𝑑  and in both cases 

the length of the stenosis is 𝑙.  

The schematic diagram showing the flow is given by the following figure: 

 
Figure 1 Geometry of a multi-irregular shape stenosed artery 

Where 𝑅(𝑧) and  𝑅0  are the radius of the artery with and without stenosis, 2𝑙 is the total length of the stenosis, 

and  𝑠  is the maximum height of the stenosis. 

The geometry of multi-shape stenosed artery can be expressed as: 
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     𝑅0                Otherwise 

                                                                                                                                                       (1) 

Assumptions and continuity equation. The following assumptions are realistic: 

1.There is only one nonzero velocity component, namely that in the direction of flow r 
 at 

 z direction. Thus 
0, 0r   

. 

2. Gravity acts vertically downwards, so that 
0zg 

. 

3. The axial velocity is independent of the angular location; that is  
0z






 . 

From continuity equation we get, 
0z

z




  . 

Navier –stokes  equations in three dimension  
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             
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Simplify of these equation we get the equation of steady blood flow, 

 

1
0 r

dp w

dz r r r


  
    

                                                                                                                 (2) 

                                                                      
The boundary conditions of our proposed geometry are: 

 0w   at (z)r R                                                                                                                            (3) 

0
w

r




  at 0r                                                                                                                                  (4)  

Now solving the equation (2) under boundary conditions (3) and (4) we get,  

1

2

dp r
w dr c

dz 

 
  
 


 (Where c is the integration constant)   

 

21 1

2 2

dp r
w c

dz 
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21 1

4

dp
w r c

dz 
 

                                                                                                                           (5) 

From equation (2) 𝑤 = 0 at 
(z)r R

  we get, 
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21 1 (z)
0

2 2

dp R
c

dz 
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21 (z)

4

dp R
c

dz 
 

  
Now putting the value of  𝑐 in equation (5) we get the value of 𝑤. 

2
21 1 1 (z)

4 4

dp dp R
w r

dz dz 
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2 21 1
(z)

4

dp
w r R
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                                                   (6) 

The volumetric flow rate is given by, 

0
2

R

Q rwdr                                                                                                               (7) 

In equation (7) putting the value of 𝑤 we get,  
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From equation (8) we obtain the pressure gradient

dp

dz  , therefore  

4

8

(z)

dp Q

dz R




 

                                                    (9) 

 

Now the shear stress at wall is defined by, 

(z)

R

r R
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                                                                          (10) 

By using equation (6) and (9) in equation (10) we can find the shear stress at maximum height of the stenosis at 

,
2

l
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  which is as follows  
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Now differentiate equation (11) with respect to 𝑟, 

2

2 4

2 1

(z) (z)

dw Q d r

dr dr R R

 
  

    

4

4

(z)

Qr

R
 

  



Available Online through 

www.ijpbs.com (or) www.ijpbsonline.com  IJPBS |Volume 4| Issue 2 |APR-JUN|2014|244-252 
 

 

International Journal of Pharmacy and Biological Sciences (e-ISSN: 2230-7605) 

Satarupa Das* et al  Int J Pharm Bio Sci 
www.ijpbs.com or www.ijpbsonline.com 

 

P
ag

e2
4

8
 

Applying the boundary condition 𝑤 = 0   at 𝑟 = 𝑅(𝑧), we get 

4
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            at  𝑑 + 𝑙 < 𝑧 ≤ 𝑑 + 2𝑙                                                     (12)       

The dimensionless shear stress 𝜏𝑠   can be obtained by equation 𝜏0 and (12), 

  𝜏𝑠 =
𝜏𝑠

𝜏0
 

We know that 𝜏0 = −
4𝜇𝑄

𝜋𝑅0
3 , where 𝜏0 is the wall stress for no stenotic region. 

𝜏𝑠1 =
1

{1−
2𝑠

𝑙𝑅0
 𝑧−𝑑 }3

  

𝜏𝑠1 =
1

{1+
2𝑠

𝑙𝑅0
 𝑧−𝑑−𝑙 }3

    

𝜏𝑠1 =
1

{1−
𝑠

𝑅0
+

4𝑠

2l 𝑅0

 𝑧−𝑑−
3𝑙

2
 

2
}3

                                                                                  (13) 

Here 𝜏𝑠  is the dimensionless wall shear stress at maximum height of the stenosis that is at 𝑧 = 𝑑 +
𝑙

2
.  

 

 Now using this condition in equation (13) we get, 

𝜏𝑠1  = 
1

(1−
𝑠

𝑅0
)3

                                                  (14) 

By the same method we find 𝜏𝑠  for remaining two range of the stenosed  artery.    
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RESULTS AND DISCUSSIONS 

We obtained the analytic expression of blood for 

different flow characteristics of blood. Now in this 

section we will discuss the flow characteristics 

graphically with the use of following numerical data. 

The values of different parameters are given below:  

𝑙 = 1, 𝑑 = 1, 𝐿 = 10, 𝑄 = 1, 𝑅0 = 2, 𝜇 = 1,
𝑠

𝑅0

≤ 1 

 
Figure 2: The distribution of Pressure Gradient for different values of viscocity 

Here we have shown the graphical representation of 

pressure gradient. In equation (9) we can see that the 

value of pressure gradient is dependent upon axial 

variable. Now from the equations, we put the 

different z values within range of 𝑅(𝑧) that is the 

equation of the geometry to obtain this relation of 

Pressure Gradient. Here we have plotted the graphs 

of pressure gradient for various values of the viscosity 

of blood. The pressure gradient in stenotic region 

dp

dz  is plotted versus 𝑧 for different values of 

viscosity. Figure 2 shows that the pressure gradient 

increases within the stenotic region and after the 

stenotic region it is again decreases. 

 

Figure 3: Variation of volumetric flow rate 
Q

 for different values of viscosity 

Here we have showed the graphical representation of 

volumetric flow rate. In equation (8) we can see that 

the value of volumetric flow rate is dependent upon 

axial variable. Here we have taken the pressure 
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gradient as constant (
𝑑𝑝

𝑑𝑧
= 1). The volumetric flow 

rate of blood in stenotic region 
Q

has been plotted 

versus 𝑧 for different values of  𝜇 . It is observed that 

the volumetric flow rate of blood decreases as axial 

variable increases for different values of viscosity. 

From the graph we can observe that, as viscosity 

increases the value of volumetric flow rate decreases. 

 
Figure 4: The distribution of axial velocity for different values of viscosity. 

Here we have showed the graphical representation of 

axial velocity. In equation (6) we can see that the axial 

velocity is dependent up on the length of the stenosis. 

In equation (6), by putting different 𝑅 𝑧  value we 

can obtain the axial velocity. In this case we assume 

that the pressure gradient is constant. The axial 

velocity in stenotic region 𝑤 plotted versus 𝑧 for 

different values of viscosity. Figure 4 shows that the 

axial velocity decreases within the stenotic region. So 

it is observed that the axial velocity of blood is 

decreases in the stenotic region and after the stenotic 

region it is again increases. 

 

Figure 5: Variation of wall shear stress for different values of 
𝒔

𝑹𝟎
 

The wall shear stress can be obtained from the 

equation (13). Here we have displayed the graphical 

representation of wall shear stress. The shear stress 

at the surface of stenosis has been plotted versus 

axial variable for different values of that is the size of 

the stenosis. Different values are 0.1, 0.2 and 0.3 
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respectively. The wall shear stress in stenotic region is 

plotted versus axial variable for different values of 

stenosis size. Figure 5 shows that the wall shear stress 

increases as the size of the stenosis increases with 

respect to axial variable in the stenotic region. 

 

CONCLUSION 

A theoretical and analytical study of blood flow 

through multi-shape stenosed artery has been carried 

out. The numerical experiment is helpful for biologist 

and medical practitioners to analyse the effect of 

blood flow in presence of multi irregular shaped 

stenosed artery. The multi-irregular shape stenosis 

have important effect on flow than single-regular 

shape stenosis. 
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