HPTLC METHOD DEVELOPMENT AND VALIDATION FOR DETERMINATION OF ETRAVIRINE IN BULK AND TABLET DOSAGEFORM

RAJA ABHILASH PUNUGOTI¹,²,³, VENKATESHWAR RAO JUPALLY²,³

¹SVS. Group of Institutions, School of Pharmacy, Bhemaram, Hanamkonda.
²TallaPadmavathi College of Pharmacy, Urus, Warangal.
³Department of pharmacy, Acharyanagarjunauniversity, Guntur.

*Corresponding Author Email: abhilashmpharm@gmail.com

ABSTRACT

A simple high-performance liquid chromatographic (HPTLC) method has been developed and validated for simultaneous determination of Etravirine in bulk and tablet dosage form. The method employed pre-treated HPTLC plates with silica gel with fluorescent indicator with layer thickness (0.2 mm) 10 cm x 10 cm aluminium (E-Merck-KgaA) as the stationary phase. The mobile phase used was a mixture of ethyl acetate: toluene (6:4 v/v). The detection of spot was carried out at 254 nm. The calibration curve of Etravirine was found to be linear between the range of 125 to 750 ng/spot with regression coefficient 0.9930. The Limit of detection (LOD) was found to be 8.36 ng/spot while the Limit of quantification (LOQ) was found to be 25.33 ng/spot for Etravirine. The proposed method can be successfully used to determine the drug content of marketed formulation. The accuracy of the proposed method was determined by recovery studies and found to be 98.20 to 101.29%. The proposed method is applicable to routine analysis of Etravirine in bulk and pharmaceutical formulations. The proposed method was validated according to various ICH parameters like linearity, accuracy, precision, specificity, LOD, LOQ, range and solution stability.

KEY WORDS

Etravirine, HPTLC, method development, ICH guidelines

1. INTRODUCTION

During the past decade HIV infection has become, at least in developed countries, a largely manageable but incurable disease. This is due to the advent of Highly Active Anti Retroviral Therapy (HAART), in which patients are treated with a cocktail of drugs designed to reduce their viral loads to extremely low levels. [1]

Etravirine[2] is a second-generation non-nucleoside reverse transcriptase inhibitor (NNRTI), designed to be active against HIV with mutations that confer resistance to the two most commonly prescribed first-generation NNRTIs, mutation K103N for Efavirenz. This potency appears to be related to Etravirine’s flexibility as a molecule. Etravirine is a diarylpyrimidine (DAPY), a type of organic molecule with some conformational isomerism that can bind the enzyme reverse transcriptase in multiple conformations, allowing for a more robust interaction between Etravirine and the enzyme, even in the presence of mutations. In turn, HIV’s genetic material cannot be incorporated into the healthy genetic material of the cell, and prevents the cell from producing new virus.[3]. Etravirine is chemically 4-[[6-amino-5-bromo-2-[(4-cyanophenyl) amino]-4-pyrimidinyl] oxy]-3, 5-dimethylbenzonitrile and its chemical structure depicted in Figure 1.
The literature survey reveals that Etravirine was analyzed by a few chromatographic methods for the quantification of Etravirine by LCMS, HPLC and UPLC[4-6]. However, HPTLC method had not been reported till date in literature for analysis of Etravirine as bulk drug or in formulations. HPTLC is a widely used analytical technique due to its advantages of low operating cost, high sample throughput, and need of minimum sample preparation. The major advantage of HPTLC is that several samples can be run simultaneously using a small quantity of mobile phase unlike HPLC, thus reducing the analysis time and cost per analysis [7]. The developed LC method is validated with respect to specificity, LOD, LOQ, linearity, precision, accuracy and robustness as per ICH recommended conditions [8].

2. EXPERIMENTAL

2.1 Materials and Methods

Etravirine was kindly gifted by Aurobindo Pharmaceuticals Ltd., Hyderabad, India. Commercially available Tablets were purchased from local market. Toluene and methanol HPLC grade and Ethyl acetate AR grade were obtained from Rankem, RFCL Ltd., New Delhi. Water was prepared by using Millipore Milli Q Plus water purification system.

2.2 Preparation of mobile phase: The mobile phase was prepared by mixing 6.0 mL ethyl acetate with 4.0 mL toluene. The mobile phase was transferred into a twin-trough chamber covered with lid and allowed to stand for 30 min before use.

2.3 Preparation of Standard stock solution of Etravirine: Etravirine (100 mg) was accurately weighed and transferred into 100 mL volumetric flask, and dissolved in methanol. The volume was made up to the mark with methanol. Aliquots were further 4 times diluted with methanol to get the final concentration of 250 μg/mL. Aliquots (0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 μL) were applied to the HPTLC plates bands of 6 mm.

2.4 Etravirine Sample Solution Preparation: Twenty tablets, each containing 600 mg of Etravirine, were weighed and their average weight was calculated. The tablets were finely powdered and powderequivalent to 100 mg Etravirine was accurately weighed and transferred in to 100 mL volumetric flask. Methanol (60 mL) was added to it and shaken for 10 minutes. The volume was made up to the mark with methanol. The solution was sonicated for 30 min, filtered through the Whatman no. 41 filter paper. Aliquot was further 4 times diluted with methanol to get the final concentration of 250 μg/mL Etravirine. An aliquot (2 μL equivalent to 500 ng/spot Etravirine) was applied to the HPTLC plate.

2.5 Pre-treatment of HPTLC plates: HPTLC plate was placed in twin-trough glass chamber containing methanol as mobile phase. Methanol was allowed to run up to the upper edge of plate (ascending method). The plate was removed and allowed to dry in oven at 60°C for 5 min. For the actual experiment the plate was allowed to room temperature and used immediately.

2.6 Instrumentation

The instrument used in the present study was Camag HPTLC with Linomat V auto spotter and Camag Scanner-III, Camag Twin trough chamber of appropriate size (20x20), Analytical weighing balance (Shimadzu AX 200), Sonicator (model SONICA 2200MH) were used throughout the experiment. Camag Wincats software was used for acquisition, evaluation and storage of chromatographic data. HPTLC plates used were silica gel with fluorescent indicator 254 nm, layer thickness (0.2 mm) 10 cm x 10 cm aluminium (E-Merck-KgaA).

3. METHOD DEVELOPMENT

3.1 Selection of mobile phase

Resolution is the most important criteria for the method, it is imperative to achieve good resolution among the compounds. As per the value of pKa and solubility of compound various composition of mobile phase were tried. The chromatographic conditions were optimized with mobile phase
consisting of ethyl acetate: toluene (6:4 v/v), which was found satisfactory to obtain sharp, well defined Etravirine peak with better reproducibility and repeatability.

3.2 Chromatographic separation
The chromatographic separation was achieved on HPTLC plates using mobile phase ethyl acetate: toluene (6:4 v/v). Etravirine reference standard solution was prepared using methanol as solvent. From the prepared standard solution, appropriate volume of aliquots were applied to silica gel 60 F254 HPTLC plates (10 cm x 10 cm) as spot bands of 6 mm using LINOMAT V. Mobile phase components were mixed prior to use and the development chamber was left for saturation with mobile phase vapors for 10 min before each run. Development of the plate was carried out by the ascending technique to a migration distance of 7 cm. Then the plates were allowed to dry.

All the analysis was carried out in a laboratory with temperature control (25 ± 2°C). Densitometry scanning was done in absorbance mode at 254 nm using deuterium lamp. The slit dimensions were set at 6 mm x 0.30 mm, the scanning speed of 10 mm/s, and the data resolution at 100 μm/step. Single wavelength detection was performed since the main components were only analyzed.

3.3 Analysis of Tablet Dosage Form: The plate was developed and analyzed as above by applying previously prepared sample solution. The chromatogram was recorded. The peak area was noted and amount of Etravirine was calculated from the regression equation.

The typical chromatogram obtained for Etravirine standard and sample from final HPTLC conditions are depicted in Figure 2 and 3 respectively.

![Figure 2: HPTLC Chromatogram of Etravirine (750 ng/spot) standard with corresponding R_f at 254 nm](image-url)
4. METHOD VALIDATION

As per ICH guidelines Q2 (R1), the method validation parameters studied were solution stability, specificity, linearity, accuracy, precision, limit of detection, limit of quantitation and robustness.

4.1 Solution Stability

Sample solutions were kept at 25°C (24 hours) and 2-8°C (3 days), respectively. Assay of initial time period was compared with these two time periods. The falls in the assay values were evaluated. The difference between assays should not be more than 2% for formulation, and 0.5% for API.

4.2 Specificity

Specificity of an analytical method is its ability to measure the analyte accurately and specifically in the presence of components that may be expected to be present in the sample matrix. Chromatograms of standard and sample solution of Etravirine were compared, and peak purity spectra at three different levels i.e., peak start (S), peak apex (M) and peak end (E) of a spot were recorded in order to provide an indication of specificity of the method.

4.3 Linearity (Calibration curve)

Standard stock solution containing 1000μg/mL Etravirine was prepared in methanol and 4 times diluted. Aliquots (0.5, 1.0, 1.5, 2.0, 2.5 and 3.0μL) were applied to the HPTLC plate to deliver 125, 250, 375, 500, 625 and 750 ng of Etravirine per spot. The plate was developed and analyzed. The calibration curve was constructed by plotting peak area versus concentration, and the regression equation was calculated. Each response was average of three determinations.

4.4 Accuracy (% Recovery)

The accuracy of the method was determined by calculating recovery of Etravirine by the standard addition method. Known amount of standard solutions of Etravirine (equivalent to 0, 125, 250 and 375 ng/spot) were applied to the sample spot of Etravirine (250 ng/spot) on the plate. Each solution was applied in triplicate. The plate was developed and analyzed. The percentage recovery was calculated by measuring the peak areas and fitting these values into the regression equation of the calibration curve.

4.5 Precision

The repeatability of measurement of peak area was checked by repeatedly (n=6) measuring area of one band of Etravirine (500 ng/spot), while repeatability of sample application was checked repeatedly (n=6) by measuring area of six bands having same concentration of Etravirine (500 ng/spot) applied on the same plate without changing the position of plate. The intra-day and inter-day precisions of the proposed method was determined by measuring the corresponding responses 3 times on the same day and on 3 different days over a period of 1 week for 3 different concentrations of Etravirine (250, 500 and 750 ng/spot). The results were reported in terms of relative standard deviation.

4.6 Limit of Detection and Limit of Quantification:
Limit of detection (LOD) and the limit of quantification (LOQ) were calculated using the standard deviation of response (σ) and slope (S) of the calibration curve.

\[
\text{LOD} = 3.3 \times \frac{\sigma}{S} \\
\text{LOQ} = 10 \times \frac{\sigma}{S}
\]

4.7 Robustness
The robustness was studied by analysing the samples of Etravirine by deliberate variation in the method parameters. The change in the response of Etravirine was noted. Robustness of the method was studied by changing the extraction time of Etravirine from tablet dosage form by ± 2 min, composition of mobile phase by ±2% of organic solvent, development distance by ±1 cm, wavelength by ±2 nm and temperature by ±2°C. The changes in the response of Etravirine were noted and compared with the original one.

5. RESULTS AND DISCUSSION:
5.1 Solution Stability
The change in assay results after storage at 25°C (24 hours) and 2-8°C (3 days) was evaluated. It was found that the difference in assay results was not more than 2% for formulation, and 0.5% for API, indicating stability of Etravirine solution.

5.2 Specificity
The proposed method was found to be specific as no interference of excipients or impurities was found in separation and determination of the peak purity of Etravirine, as \(r(S, M) = 0.9999\) and \(r(M, E) = 0.9998\), and good correlation \((r = 0.9999\) and 0.9998\) was obtained between standard and sample spectra of Etravirine, respectively. The peak purity and correlation > 0.99 indicated that the method is specific. The peak purity of the spectra Etravirine from tablet dosage form is shown in the Figure 4.

5.3 Linearity
Linear correlation was obtained between peak area and concentration of Etravirine in the range of 125-750 ng/spot. The linearity of the calibration curve was validated by the value of correlation coefficients of the regression \((r)\). The optical and regression characteristics are listed in Table 2. The 3D Chromatogram showing peaks of Etravirine standards in different concentrations are illustrated in Figure 5 and the Calibration curve is shown in Figure 6.

![Figure 4: Peak purity spectra of Etravirine from tablet dosage form](image-url)
Figure 5: 3D Chromatogram showing peaks of Etravirine standards in different Concentrations

Table 2: Optical and regression characteristics (n=3)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ETRAVIRINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linearity range (ng/spot)</td>
<td>125-750</td>
</tr>
<tr>
<td>Linearity equation</td>
<td>y = 9.024x + 734.4</td>
</tr>
<tr>
<td>LOD (ng/spot)</td>
<td>8.36</td>
</tr>
<tr>
<td>LOQ (ng/spot)</td>
<td>25.33</td>
</tr>
<tr>
<td>Correlation coefficient (r)</td>
<td>0.9930</td>
</tr>
</tbody>
</table>

5.4 Accuracy (% Recovery)

Accuracy study was carried out by the standard addition method. The percentrecovery was found in the range of 98.20 – 101.29 % for Etravirine, which indicated accuracy of the method. The results are tabulated in Table 3.

Table 3: Results of recovery study (n=3)

<table>
<thead>
<tr>
<th>Drug</th>
<th>Amount taken (ng/spot)</th>
<th>Amount added (ng/spot)</th>
<th>Amount found (ng/spot)</th>
<th>Recovery ±SD,%</th>
<th>%RSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETRAVIRINE</td>
<td>250</td>
<td>0</td>
<td>245.52</td>
<td>98.20±1.43</td>
<td>1.43</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>125</td>
<td>379.86</td>
<td>101.29±0.69</td>
<td>0.69</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>250</td>
<td>496.64</td>
<td>99.32±0.86</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>375</td>
<td>616.92</td>
<td>98.70±1.64</td>
<td>1.64</td>
</tr>
</tbody>
</table>

5.5 Precision (Repeatability)

The % RSD of the repeatability of measurement of peak area was found to be0.77; while of the repeatability of sample application was found to be 1.80 for Etravirine. The % RSD for intra-day precision was found to be in the range of 0.65 -0.92 %; while inter-day precision was found to be in the range of 0.90 - 1.24% for Etravirine, which indicated that the method was precise. The results are tabulated in Table4 and results for intra-day and inter-day precision is summarised in Table 5.
Table 4: Results of repeatability (n=6)

<table>
<thead>
<tr>
<th>Drug</th>
<th>Measurement of peak area</th>
<th>Sample application</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETRAVIRINE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4275</td>
<td>4321.2</td>
</tr>
<tr>
<td>2</td>
<td>4234.6</td>
<td>4286.7</td>
</tr>
<tr>
<td>3</td>
<td>4284.2</td>
<td>4354.3</td>
</tr>
<tr>
<td>4</td>
<td>4221.3</td>
<td>4408.4</td>
</tr>
<tr>
<td>5</td>
<td>4312.3</td>
<td>4186.4</td>
</tr>
<tr>
<td>6</td>
<td>4264.6</td>
<td>4257.9</td>
</tr>
<tr>
<td>Mean</td>
<td>4265.43</td>
<td>4302.48</td>
</tr>
<tr>
<td>SD</td>
<td>33.12</td>
<td>77.41</td>
</tr>
<tr>
<td>% RSD</td>
<td>0.77</td>
<td>1.80</td>
</tr>
</tbody>
</table>

Table 5: Results of Intra-day and Inter-day precision (n=3)

<table>
<thead>
<tr>
<th>Drug</th>
<th>Concentration (ng/spot)</th>
<th>Intra-day precision</th>
<th>Inter-day precision</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean peak area ± SD</td>
<td>% RSD</td>
</tr>
<tr>
<td>ETRAVIRINE</td>
<td>250</td>
<td>3077.0 ± 27.38</td>
<td>0.89</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>5418.0 ± 35.21</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>750</td>
<td>7310.2 ± 67.56</td>
<td>0.92</td>
</tr>
</tbody>
</table>

5.6 Limit of detection and limit of quantification
The Limit of detection (LOD) was found to be 8.36ng/spot while the Limit of quantification (LOQ) was found to be 25.33ng/spot for Etravirine.

5.7 Robustness
The method was found to be robust as the results were not significantly affected by slight variation in extraction time, composition of mobile phase, development distance, wavelength and temperature.

5.8 Analysis of Tablet Dosage Form
The proposed HPTLC method was successfully applied for determination of Etravirine from tablet dosage form. The percentage of Etravirine was found to be satisfactory, which was comparable with the corresponding label claim. The results are tabulated in Table 6.

Table 6: Analysis results of tablet dosage form (n=3)

<table>
<thead>
<tr>
<th>Drug</th>
<th>Labelled amount (mg)</th>
<th>Amount found (mg)</th>
<th>Assay %± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETRAVIRINE</td>
<td>600</td>
<td>594.66</td>
<td>99.11±1.70</td>
</tr>
</tbody>
</table>

6. CONCLUSION:
A high performance thin layer chromatographic method has been developed and validated for the determination of Etravirine from tablet dosage form. The method was found to be specific as there was no interference of excipients and impurity. The proposed method was found to be simple, accurate, precise, sensitive and robust. Hence, it can be used successfully for the routine analysis of Etravirine in pharmaceutical dosage forms.
7. REFERENCES

