

International Journal of Pharmacy and Biological Sciences ISSN: 2321-3272 (Print), ISSN: 2230-7605 (Online) IJPBSTM | Volume 8 | Issue 4 | OCT-DEC | 2018 | 1132-1139

Research Article | Biological Sciences | Open Access | MCI Approved ज्ञान-विज्ञान विमुक्तये

UGC Approved Journal

IN VITRO ANTIOXIDANT AND ANTI-INFLAMMATORY OF THE FLOWER EXTRACTS OF *PEDALIUM MUREX L*.

D. Prabhakaran^{1,2*}, A. Rajeshkanna¹ and M. M. Senthamilselvi³ ¹Department of Chemistry, Periyar E.V.R. College (Autonomous), Trichy, Tamil Nadu, India. ²Chettinad Cement Corporation Ltd., Ariyalur, Tamil Nadu, India. ³Principal, Kamarajar Government Arts College, Surandai, Tamil Nadu, India.

*Corresponding Author Email: prabhakarandhanaval@gmail.com

ABSTRACT

To evaluate the antioxidant and anti-inflammatory activities of the solid powder obtained from the ethyl acetate fraction from the flower Pedalium murex L. The flower extract was evaluated for antioxidant activity by 1,1– diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging assay and reducing power assay was carried out by FRC (Ferric Reducing Capacity) assay method. The in vitro anti-inflammatory activity was evaluated using human peripheral blood mononuclear cells (PBMC) were stimulated by lipopolysaccharide (LPS) to evaluate nitric oxide (NO) production method. The solid powder obtained from the ethyl acetate fraction from the flower Pedalium murex L showed a good antioxidant activity in scavenging DPPH radical and FRC assay with compared standard sample. This solid powder also showed good anti-inflammatory activity in cell viability (LPS induced PBMCs) assay and nitric oxide (NO) assay. These results suggest that the solid powder obtained from the ethyl acetate from the ethyl acetate fraction from the flower Pedalium murex L have significant antioxidant and anti-inflammatory activities.

KEY WORDS

Anti-inflammatory, Ethyl acetate, FRC, Pedalium murex.

INTRODUCTION

Numerous higher plants are real wellsprings of regular items utilized as pharmaceuticals, agrochemicals, flavor and scent fixings, sustenance added substances and pesticides [1]. The look for new plant metabolites ought to be a need in present and future endeavors towards manageable protection and usage of biodiversity. Restorative plants are generally utilized as option helpful apparatuses for the counteractive action of numerous ailments [2, 3]. Herbal based drugs remain an important source because of the availability, relatively cheaper cost and no side effects when compared to modern medicine [4]. The field of free radical science is increasing more consideration nowadays. Free radicals are responsive oxygen and nitrogen species which are produced by different physiological procedures in the body. Uncontrolled era of free radicals prompts assault

on layer lipids, proteins, catalysts and DNA causing oxidative anxiety and at last cell demise. These ROS are dependable for some degenerative human illnesses like diabetes mellitus, tumor, neurodegenerative scatters, Alzheimer's malady, Parkinson's ailment, atherosclerosis, maturing and provocative diseases [5]. In human body there are different chemical frameworks with the expectation of complimentary radical rummaging yet micronutrients like vitamin E, betacarotene and vitamin C are the significant antioxidant. These must be given in consume less calories as body can't deliver these nutrients [6]. Assurance against free radicals can be upgraded by taking adequate measures of exogenous cell reinforcements. Cell reinforcement is a steady atom which gives an electron to a rampaging free radical and ends the chain response before essential particles are harmed. Free radical rummaging property of cancer prevention agents delays or hinders

cell damage [7]. Inflammation is the central feature of many physiopathological conditions in response to tissue injury and as part of host defense against microorganisms [8]. In inflammatory processes, macrophages have a key part in providing a prompt guard against outside operators. Upon enactment with an inflammatory jolt, for example, lipopolysaccharyde (LPS), macrophages produce pro-inflammatory go betweens, including nitric oxide (NO). Therefore, the search of effective non-toxic natural compounds with antioxidative activity has been identified in recent years [9]. Plants containing polysaccharides are the most potent in curing inflammatory diseases [10].

Pedalium murex L is an individual from sesame family, Pedaliaceae. It is found in various piece of the world, for example, tropical range, Srilanka, India, Mexico and Pakistan. In India, it happens fundamentally in the Western and Corommandal drifts as weed of waste places and is for the most part called under the Hindi name "" Gokhru or gokhar" and in Sanskrit as "gajadaunstraka, gokshura or titta -gokshura". Its name shifts from one district to another extending from North to South and from East to West piece of the nation. Its likewise brought in Kannada (doddaneggilu), Malayalam (motha-malvi-gokharu), Tamil (Yanainerunjil &Ananerinnil), Marathi (Gokhara), Gujarati (Gokhura), Oriya(Yanainerunjil) ,Arabic (Khasakekabir) and Singapore (Atineranchi) [11-13]. A mixture or concentrate arranged from the diverse piece of the plant in frosty water is utilized as demulcent, diuretic, and furthermore observed to be best in the treatment of clutters of urinary frameworks, for example, gonorrhea, dysuria, incontinence of the pee and the other way around [14,15]. This plant is likewise utilized by the neighborhood individuals as pain relieving and antipyretic exercises [16,17]. The leaves, root and fruits of this plant had anti-inflammatory and antioxidant action [18, 19]. Since there is an absence of logical assessment of the antioxidant and anti-inflammatory movement of this plant. Keeping this in see, the present examination has been attempted to explore the antioxidant and anti-inflammatory capability of the solid powder got from the ethyl acetate portion from the flower Pedalium murex L.

Int J Pharm Biol Sci.

MATERIALS AND METHODS

Collection of flowers

The new flowers of *Pedalium murex.L* were gathered from Z. Suthamalli, Ariyalur (Dt), Tamil Nadu, India. This plant was legitimately recognized by Dr.S.John Britto, Director, The rapinat Herbarium and Center for Molecular Systematics (Authentication No. DP002 dated: 22/01/2016). St.Joseph's College (Campus), Tiruchirappalli, Tamil Nadu, India.

Extraction and fractionation

Crisp flowers (3 kg) of *Pedalium mure L*. were removed with 90% ethanol (5x500ml). The consolidated alcoholic concentrate was amassed in vacuo and the aqueous concentrate was progressively fractionated with petroleum ether (60-800C) (6x250ml), Peroxide free diethyl ether (4x250ml) and ethyl acetate (8x250ml). Petroleum ether division and diethyl ether division did not yield any isolable substance. Ethyl acetate fraction on focus yielded a dry powder which was broken up in DMSO to get different fixations and were utilized for additionally examines.

DPPH scavenging assay

DPPH radical searching action of the sample was decide as indicated by the technique detailed by Blois (1958). An aliquot of 0.5 ml of test arrangement in methanol was blended with 2.5 ml of 0.5 mM methanolic arrangement of DPPH. The blend was shaken energetically and hatched for 30 min oblivious at room temperature. The absorbance was estimated at 517 nm utilizing UV spectrophotometer. Ascorbic acid was utilized as a positive control. DPPH free radical rummaging capacity (%) was ascertained by utilizing the recipe [20, 21, 22].

% Inhibition= [{Abs control- Abs sample}/Abs control] ×100

Where Abs _{control} is the absorbance of the DPPH radical+ ethanol, Abs _{sample} is the absorbance of DPPH radical+ test separate/standard.

Ferric Reducing Capacity (FRC) assay

The FRC assay is like the FRAP assay with the exception of that it utilizes O-Phenanthroline rather than TPTZ. Phenanthroline shapes a Fe^{III}-(Phen)₃ complex that is diminished to an orange-red—shaded Fe^{II}-(Phen)₃ complex. The response blend containing 1 ml of 0.05% O-Phenanthroline in methanol, 2 ml ferric chloride (200 μ M), 20 ml of acetate buffer and 2 ml of different focuses extending from 10 to 250 μ g was brooded at room temperature for 10 min and the absorbance of the same was estimated at 510 nm. Newly arranged FRC

reagent clear perusing was taken at 510 nm. In this assay lessening limit of the samples tried and compared and that of ascorbic acid. All estimations were done in triplicate and the average was taken [23, 24, 25].

% Reduction = A₅₁₀ sample / A₅₁₀ blank reagent Isolation of Human PBMC and Culture

PBMC (peripheral blood mononuclear cells) from sound givers were disengaged from EDTA tube blood by Ficoll-Hypaque angle centrifugation. To put it plainly, peripheral blood from the givers was weakened with sterile phosphate buffer saline and overlaid on the Ficoll-Hypaque arrangement, and centrifugation was performed at 350 x g for 10 min at room temperature. The recuperated PBMC were refreshed in RPMI-1640 and brooded at $37^{\circ}C$ 95%O₂ + 5% CO₂ for 30 min before playing out the investigations [26].

The cell viability of PBMCs with LPS Stimulation

After the PBMC isolation and pre-incubation period, 1×10⁵ cells/ml PBMC were cultured in a 96-well polypropylene plate in serum-free RPMI-1640 medium with LPS at a final concentration of 100 ng/ml and various concentrations of the sample in dimethyl sulfoxide (DMSO). Cells in all conditions were incubated at 37°C, 95%O₂ + 5% CO₂ for 24 h. Supernatants were removed from the treated cells to investigate nitrous oxide (NO) scavenging activity. The viability of the cells was performed to evaluate the cytotoxicity of the sample using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide) assay. In the control wells, cells were incubated with DMSO vehicle and without LPS. In the positive control wells, cells were incubated with LPS and DMSO vehicle. The cell viability was determined by measuring the absorbance at 570 nm by a micro plate reader [26].

% Cell viability = (OD of the sample/OD of the control) ×100

Nitric oxide (NO) inhibition assay

Nitric oxide discharged in the supernatants was explore utilizing Griess reagent. The supernatants (100 μ l) were blended with 20 μ l of 1% sulfanilamide in 5% phosphoric acid,

hatched for 10 min at room temperature, 20 µl of 0.1% naphthyl - ethylenediamine dihydrochloride were included and brooded for 10 min at room temperature. After that the absorbance of the response blend was perused at 540 nm. Sodium nitrite was utilized for the adjustment bend [27, 28, 29].

Statistical analysis

All the data were reported as the mean \pm standard deviation (S.D.). All statistical analysis was performed by methods for one-way analysis of variance (ANOVA) and Student's t-test utilizing Graph Pad Prism statistical software package version7.02. The IC₅₀ esteem was processed from nonlinear backslide examination using the Graph Pad Prism programming with the condition: Y = $100[1 + 10^{(X'' \ LogIC_{50})}]$. Only a value of p < 0.05 was considered statistically significant.

RESULTS AND DISCUSSION

Anti-oxidant activity

DPPH assay is quick, simple and practical strategy to quantify an antioxidant effect, which includes the utilization of the free radical [30], 2, 2-Diphenyl-1picrylhydrazyl (DPPH). DPPH is usually used to test the capacity of mixes to go about as free extreme foragers or hydrogen contributors and it depends on the capacity of DPPH to decolorize within the sight of antioxidant [31, 32]. The inhibition of the DPPH radical by the solid powder obtained from the ethyl acetate fraction from the flower Pedalium murex L was concentration dependent (Fig.1). The inhibition percentage of the solid powder at different concentrations (10, 50,100,200 and 250 μ g/ml) ranged between 76.43 ± 0.10% to 82.41±0.13%. This solid fraction was capable of reducing the DPPH radical 50% with IC₅₀ of <10 μ g/ml compared to standard ascorbic acid which also have an IC_{50} <10 μ g/ml. So the solid powder obtained from the ethyl acetate fraction from the flower Pedalium murex L showed a very good anti-radical activity in scavenging DPPH radical and showed a maximum % inhibition of 82.41±0.13% at 250µg/ml concentration. DPPH scavenging activity of *Pedalium murex L* was shown in table 1.

The decreasing furthest reaches of a compound may fill in as a basic pointer of its potential antioxidant activity. The science of iron-based assays might be stuffed with the response condition:

Fe (III)–L + antioxidant \leftrightarrow Fe (II)–L + oxidized antioxidant

Where L is the ferrous-specific chromogenic ligand delivering the shaded species Fe (II)–L because of the concerned redox response. Longer wavelengths quite often constitute an imperative preferred standpoint in spectrophotometric strategy determination, on the grounds that most plant pigments and additionally a few antioxidants demonstrate huge assimilation at shorter

wavelengths near the UV scope of the unmistakable range. This reasoning applies for L :O-Phenanthroline instead of TPTZ ligand for modern FRAP assay. The redox response with tris(phen)Fe (III) of a polyphenolic compound Ar(OH)n is given as:

nFe(phen)₃³⁺ +Ar(OH) $n \leftrightarrow n$ Fe(phen)₃²⁺ +Ar(=O)n + nH⁺ The reduction values of the solid powder obtained from the ethyl acetate fraction from the flower *Pedalium murex L* at various concentration (10, 50,100,200&250 µg/ml) ranged between 18.42± 0.90% to 88.40±1.06% are depicted in Table 2. The IC₅₀ values of this solid fraction were found to be 50.24±1.06µg/ml compared to standard ascorbic acid which has a 32.88±2.50µg/ml. In the concentration extend examined, all the solid powder exhibited reducing power that expanded straightly with concentration (Fig.2). So the solid powder obtained from the ethyl acetate fraction from the flower *Pedalium murex L showed* a very good antiradical activity in FRC assay and showed a maximum % reduction 88.40±1.06 % at 250µg/ml.

Anti-inflammatory activity

The ideal condition for LPS-incited pro-inflammatory cytokines production was in PBMCs. LPS is a gram – negative microbes which has an endotoxin and a constituent of the external layer. LPS stimulates innate immunity by regulating the production of inflammatory mediators such as TNF- α in PBMCs. The results showed (Fig.3) that the solid obtained from the ethyl acetate fraction from the flower *Pedalium murex L* showed dose dependant. Examination of the cell viability of the fraction in PBMCs using the MTT assay had indicated that the powder at (25 to 200) µg/ml did not affect the viability of PBMCs. Thus, the inhibition of LPS- induced mediator inflammation by the solid powder was not the

result of a possible cytotoxic effect on these cells. So these outcomes propose the anti-inflammatory impact of the solid powder (Table 3), focusing on proinflammatory cytokines generation, and using this solid fraction possibly did not bring about unfavorable impacts.

Nitric oxide (NO) is a pivotal biological messenger. As an inflammatory arbiter, NO assumes a part in a wide range of physiological and pathophysiological procedures, for example, macrophage-intervened cytotoxicity, vein smooth muscle dilatation, unwinding, and neurotransmission (33). PBMCs were refined with LPS (100 ng/ml) and the substance of the proved nitric oxide (NO) were measured in the supernatants as a component of macrophage actuation. The impact of nitric oxide (NO) was seen in the cell culture medium of PBMC containing diverse concentration (25, 50,100 and 200 μ g/ml) of the solid powder obtained from the ethyl acetate fraction from the flower Pedalium murex L as appeared in Table 4. The NO production percentage of the solid fraction at different concentration (25 to 200 µg/ml) ranged between 86.41±0.75% to 64.19±0.62% are depicted in Table 4. This study demonstrated that the solid ethyl acetate fraction from the flower Pedalium murex L much reduced the production of Nitric oxide (NO). The data demonstrate a significant decrease in the nitric oxide production in the solid fraction as compared to control group (Fig.4).

Hence, it's clear that the solid powder obtained from the ethyl acetate fraction of *Pedalium murex L* flowers has anti inflammatory activity in NO assay and showed a maximum reduced NO production $64.19\pm0.62\%$ at 200μ g/ml.

Concentration (µg/ml)	% of Inhibition	
	Sample	Standard (Ascorbic acid)
10	$76.43 \pm 0.10^{*}$	78.98 ± 0.43
50	$77.23 \pm 0.44^*$	84.68 ± 0.04
100	$79.49 \pm 0.19^{*}$	86.10 ± 0.34
200	$81.09 \pm 0.06^*$	89.82 ± 0.82
250	$82.41 \pm 0.13^*$	92.15 ± 0.50
	IC 50< 10 µg/ml	IC 50< 10 µg/ml

Table 1: DPPH (1,1-Diphenyl-2-picrylhydrazyl) radical scavenge	ging assay
--	------------

Values are shown as for means ±SD of triplicate. *p<0.05 compared with standard (one-way ANOVA and t-test)

Concentration (µg/ml)	% of Reduction		
	Sample	Standard (Ascorbic acid)	
10	$18.42 \pm 0.90^*$	25.07±0.98	
50	47.49±1.22 [*]	55.20±1.11	
100	65.73±0.95 [*]	78.00±0.48	
200	81.60±2.03 [*]	92.57±1.02	
250	88.40±1.06 [*]	95.73±0.91	
	IC 50=50.24± 2.2 μg/ml	IC 50=32.88±2.50 μg/ml	

Table 2: Ferric Reducing Capacity (FRC) assay

Values are shown as for means ±SD of triplicate. *p<0.05 compared with standard (one-way ANOVA and t-test)

Table 3: PBIVICS with LPS of cell viability				
Concentration	Cell Viability (%)			
(µg/ml)				
Control	100			
Positive control (LPS)	60.79 ± 0.74			
25	$75.43 \pm 0.50^{*}$			
50	$86.44 \pm 0.62^*$			
100	$99.38 \pm 0.37^*$			
200	$99.50 \pm 0.25^*$			

Table 3: PBMCs with LPS of cell viability

Values are shown as for means ±SD of triplicate. *p<0.05 compared with control and positive control (one-way ANOVA and t-test).

Table 4: Nitric oxide (NO) inhibition assay

Concentration (µg/ml)	NO production (%)
Control (LPS)	100
25	$86.41 \pm 0.75^*$
50	$80.75 \pm 1.05^*$
100	$71.23 \pm 0.45^*$
200	$64.19 \pm 0.62^*$

Values are shown as for means ±SD of triplicate. *p<0.05 compared with control (one-way ANOVA and t-test)

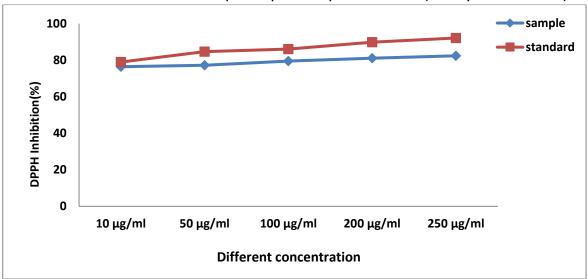


Fig. 1. DPPH inhibition (%) activity of the sample (solid powder of *Pedalium murex L* flower fraction) and standard (Ascorbic acid) at different concentration.

Int J Pharm Biol Sci.

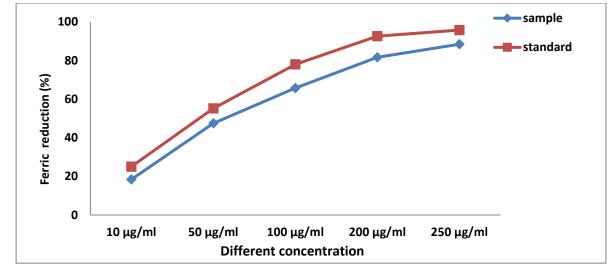


Fig. 2. Ferric reduction (%) of the sample (solid powder of *Pedalium murex L* flower fraction) and standard (Ascorbic acid) at different concentration.

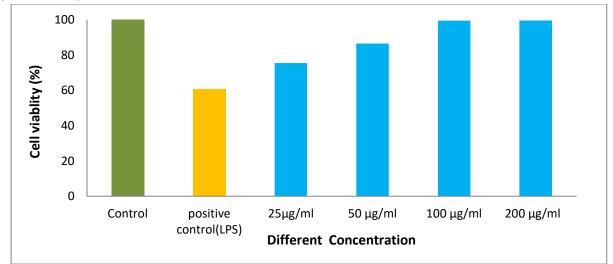


Fig. 3. The cell (PBMC) viability percentage of without LPS (control), with LPS (positive control) and the sold powder (*Pedalium murex L* flower fraction) at different concentration.

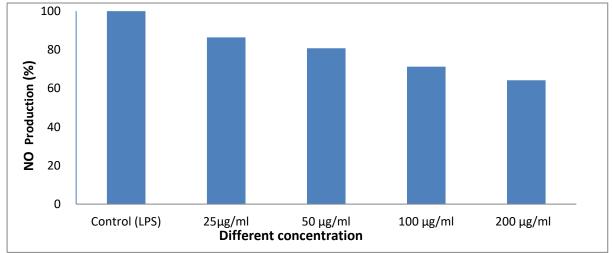


Fig. 4. The effect of solid powder (*Pedalium murex L* flower fraction) different concentration on NO production by human PBMC stimulated with LPS.

CONCLUSION

In conclusion, show contemplate uncovered the in-vitro antioxidant and anti-inflammatory action of the solid acquired from the ethyl acetate fraction of the flower *Pedalium murex L*. Moreover, work is required remembering the true objective to develop the character of the substance constituent responsible for antioxidant and anti-inflammatory activities. Studies are ahead of time in our examination office to outline the sub-nuclear structure of the compound. This contributes towards the progression of extreme antioxidant and anti-inflammatory pharmaceutical.

REFERENCES

- Balandrin MJ, Klocke JA., Medicinal, aromatic and industrial materials from plants: Medicinal and Aromatic Plant I. In: Y.P.S. Bajaj (ed.), Biotechnology in Agriculture and Forestry. 4:3-36, (1988).
- Sarabjot Kaur, Poonam Mondal., Study of total phenolic and flavonoid content, antioxidant activity and antimicrobial properties of medicinal plants. J Microbiol Exp, 1:1-6, (2014).
- Nagaveni V Rao. Evaluation of antioxidant potential and qualitative analysis of major polyphenols by RP-HPLC in *Nymphaea nouchali Burm*. Int J Pharm Pharm Sci, 2:98-104,(2010).
- Nithya Narayanaswamy, Balakrishnan KP. Evaluation of some medicinal plants for their antioxidant properties. Int J PharmTech Res,3:381-5, (2011).
- Gülçin I. Comparison of in vitro antioxidant and antiradical activities of L-tyrosine and L-Dopa. Amino acids, 32(3): 431-438, (2007).
- Ramassamy C. Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: a review of their intracellular targets. Eur J Pharmacol, 545(1): 51-64, (2006).
- Halliwell B. How to characterize an antioxidant: an update. Biochem Soc Symp, 61: 73-101, (1995).
- Brodsky, M., Halpert, G., Albeck, M., Sredni, B. The antiinflammatory effects of the tellurium redox modulating compound, AS101, are associated with regulation of NF_B signaling pathway and nitric oxide induction in macrophages. Journal of Inflammation, 7: 1-8, (2010).
- Jothibai R, Margret S, Kumaresan, Ravikumar S. A preliminary study on the anti-inflammatory activity of methanol extract of *Ulva lactuca* in rat. J Environ Biol, 5:899-902, (2009).
- Chandrika M, Chellaram M. Efficacy of antioxidation and anti- inflammation of the leaf extracts of *borreria hispida*. Int J Pharm Pharm Sci, 8(8) : 369-372, (2016).
- 11. Shukla YN, Thakur RS. Heptatriacontan-4-one tetratriacontanyloctacosanoate and other constituents

from Pedalium murex.Phytochemistry, 22(4): 973-974, (1983).

- Bhakuni RS, Shukla YN, Thakur RS. Flavonoids and other constituents from Pedalium murex Linn. Phytochemistry, 31(8):2917-2918, (1992).
- Patel DK, Laloo D, Kumar R, Hemalatha S.Pedalium murex Linn.: an overview of its phytopharmacological aspects, Asian Pac J Trop Med, 4(9):748-55, (2011).
- Chopra RN, Nayar SL, Chopra IC. Glossary of Indain medicinalplants. 1st ed. New Delhi: National Institute of ScienceCommunication (C.S.I.R); (1999).
- Shukla YN, Khanuja SPS. Chemical, pharmacological and botanical studies on Pedalium murex. J Med Aromat Plant Sc, 26(1):64-69, (2004).
- 16. Pietta PG. Flavonoids as antioxidants. J Nat Prod, 63(7):1035-1042, (2001).
- Shelke TT, Kothai R, Adkar PP, Bhaskar VH, Juvale KC,Kamble BB, et al. Nephroprotective activity of ethanolic extractof dried fruits of Pedalium murex linn. J Cell Tissue Res, 9(1):1687-1690, (2009).
- Parimaladevi B, Davidraj C, Tamil Chelvan N, Rama Subramaniaraja R. Evaluation of anti-inflammatory activity of methanol extract of Abutilon indicum and P. murex: A comparative study. J Pharm Res, 3 (10): 2425-2426, (2010).
- 19. Srinivas P, Venkateshwarlu L, Madhubabu A, Anil Kumar Ch. Antioxidant activity of P. murex fruits in carbon tetra chlorideinduced hepatopathy in rats, 2: 622-628, (2011).
- Blois, M. S. Antioxidant Determinations by the Use of a Stable Free Radical. Nature, 181(4617): 1199–1200, (1958).
- Adedapo, A.A., Jimoh, F.O., Koduru, S., Afolayan, A.J., Masika, P.J. Antibacterial and antioxidant properties of the methanol extracts of the leaves and stems of Calpurnia aurea. B.M.C. Complement. Altern. Med,8 (53):1-8, (2008).
- Sakat S, Juvekar AR, Gambhire MN. In vitro antioxidant and anti-inflammatory activity of methanol extract of Oxalis corniculata Linn. Int J Pharm Pharm Sci, 2(1):146-56, (2010).
- Benzie IEF and Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal Biochem, 239: 70-76, (1996).
- 24. Satheesh kumar DR, Pooja M, Harika K, Haswitha E, Nagabhushanamma G and Vidyavathi N. In-vitro antioxidant activities, total phenolics and flavonoid contents of whole plant of Hemidesmus indicus Linn. Asian J Pharm Clin Res, 6(2):249-251, (2013).
- 25. Christopher Seng Hong Lim and Siew Lin Lim. Ferric Reducing Capacity Versus Ferric Reducing Antioxidant Power for Measuring Total Antioxidant Capacity. Laboratory Medicine, 44(1):51-55, (2013).
- Jenny M, Klieber M, Zaknun D, Schroecksnadel S, Kurz K , Ledochowski M, Schennach H and Dietmar Fuchs. In vitro testing for anti-inflammatory properties of compounds

employing peripheral blood mononuclear cells freshly isolated from healthy donors. Inflamm. Res, 60:127–135, (2011).

- Green, L.C., Wagner, D.A., Glogowski, J., Skipper, P.L., Wishnok, J.S., Tannenbaum, S.R. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Analytical Biochemistry, 126: 131-138, (1982).
- 28. Saravanan.S , Hairul Islam.V.I , Thirugnanasambantham.K, Pazhanivel.N , Raghuraman.N , Gabriel Paulraj.M and Ignacimuthu.S. Swertiamarin ameliorates inflammation and osteoclastogenesis intermediates in IL-1 β induced rat fibroblast-like synoviocytes. Inflamm. Res, 63:451–462, (2014).
- Ignacio SRN, Ferreira JLP, Almeida MB, Kubelka CF. Nitric oxide production by murine peritoneal macrophages in vitro and *in vivo* treated with Phyllanthus tenellus extracts. J Ethnopharmacol, 74:181–7, (2001).

Received:04.08.18, Accepted: 07.09.18, Published:01.10.2018

- 30. Richa upadhyay, Jitendra kumar chaurasia, Kavindra Nath Tiwari, Karuna Singh. Antioxidant property of aerial parts and root of phyllanthus fraternus webster, an important medicinal plant. Scientific World J, 2014:2-5, (2014).
- Sumanya H, Lavanya R, Umamaheswara reddy R. Evaluation of in vitro anti-oxidant and anti-arthritic activity of methanolic extract of marine green algae caulerpa racemosa. Int J Pharm Pharm Sci, 7(7):340-343, (2015).
- 32. Saha MR, Hasan SMR, Akter R, Hossain MM, Alam MS, Alam MA, Mazumder MEH. In vitro free radical scavenging activity of methanol extract of the Leaves of mimuso pselengi linn. Bangl J Vet Med, 6(2):197–202, (2008).
- Forstermann U and Kleinert H. Nitric oxide synthase: expression and expressional control of the three isoforms, Naunyn Schmiedebergs Arch. Pharmacol, 352:351–364, (1995).

*Corresponding Author:

D. Prabhakaran

Email: prabhakarandhanaval@gmail.com