

International Journal of Pharmacy and Biological Sciences ISSN: 2321-3272 (Print), ISSN: 2230-7605 (Online)

IJPBS | Volume 8 | Issue 3 | JUL-SEPT | 2018 | 241-257

|UGC Approved Journal |

Research Article | Biological Sciences | Open Access | MCI Approved

GCMS ANALYSIS OF AN UNIQUE BIHERBAL EXTRACT

Yousuf Anwar Syed and Ameerjani Shaik* Department of Genetics and Biotechnology, Osmania University, Hyderabad, India

*Corresponding Author Email: aaumeerj@yahoo.com

ABSTRACT

In this study, traditionally significant medicinal plants Ficus religiosa (Linnaeus.) and Ficus racemosa (Linnaues.) were identified and authenticated. Stem powder of Ficus religiosa (Linn.) and bark powder of Ficus racemosa (Linn.) were mixed together to form a raw bi herbal powder. Using ethanol, extraction of raw biherbal powder was done for seven consecutive days by steady state cold maceration method. Residue obtained due to rotaevaporation was subjected to Gas Chromatography Mass Spectrometry (GCMS) analysis. Fourteen compounds were identified with their respective retention times and percentage of Probability. In the light of the earlier literature on the bioassays of the above individual explants of bi-herbal extract, future research and application on this bi-herbal extract or its purified fractions can be beneficial.

KEY WORDS

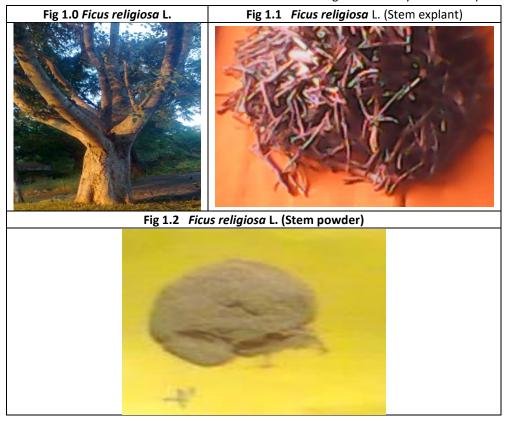
Ficus religiosa L., Ficus racemosa L., Bi-herbal extract, Maceration, GCMS, anti-microbial activity.

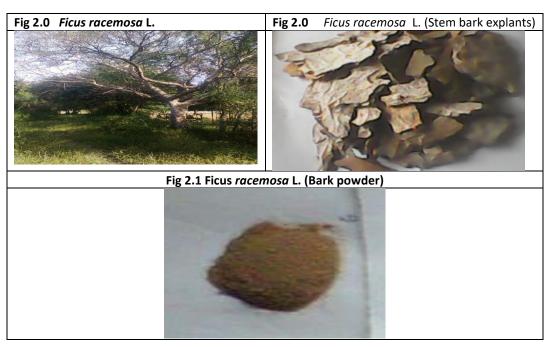
Abbreviations: BA, Bhagavathi Ana; °C, degree centigrade; Fig, Figure; g, gram; HP-5MS, High Performing- (5%phenyl-95% methylpolysiloxane; Linn, Linnaeus; m, meter; µm, micrometer; µl, microliter; min, minutes; ml, milliliter; mL/min, milliliter per minute; NI, Nitrogen; NIST, National Institute of Standards and Technology; psi, pounds per square inch; UGC MRP, University Grants Commission Major Research Project; ver., Version 2.

1. INTRODUCTION

Traditional knowledge is employed to mean knowledge, innovations and practices of indigenous and local communities (niscair.res.in 2018). It has been a predominant practice that as new chemical entities become hard to find, scientists across the world, often goes back to earlier substances to find novel properties (Sulekha and Savitha 2011). Several members of the genus Ficus (family: Moraceae) are being used traditionally in a wide variety of ethno medical remedies (Veerapur et al., 2009). According to Indian Traditional Knowledge the plant species governing the planet Jupiter is Ficus religiosa and Venus is Ficus racemosa, as referred in a traditional Sanskrit verse 'Aswatham Brihaspathaye, Audumbarag Shukraya' (Chandrakanth et al.,1999).In Vedic culture these two plants are medicinally potential and their representing planets are mythologically very significant celestial entities.

The Ayurvedic literature 'Sarangdhara Samhita' highlighted the concept of polyherbalism to achieve greater therapeutic efficacy. The active phytochemical constituents of individual plants are insufficient to achieve the desirable therapeutic effects. When combining the multiple herbs in a particular ratio, it will give a better therapeutic effect and reduce the toxicity (Subramani P et al., 2014). Gas chromatography (GC) is a procedure in which the volatile components of a mixture are separated by partitioning between a moving, inert gas (carrier gas) and a non-volatile liquid (the stationary phase). Mass spectrometer is an instrument which creates and records weights and relative abundance of the fragments (Stephen, 1980). In this article a biherbal extract made of above plants which was not reported earlier, was subjected to Gas Chromatography - Mass Spectrometry analysis for identification of compounds. Also, the type of GCMS




column employed was for the first time used for analysis of such biherbal extract.

2. MATERIALS AND METHODS

2.1 Materials:

Ficus religiosa L., (Figure 1.0, 1.1 and 1.2); Ficus racemosa L. (Figure 2.0, 2.1 and 2.2) were identified at the field using standard keys and descriptions.

2.2 Method of sample preparation, extraction and evaporation:

Explants were cleaned, washed in running water and then in distilled water (Ganis, India) and naturally shade dried for a week and pulverized using mortar and pestle. 5.0 g each of the homogenized explants was weighed using electronic balance (Shimadzu AUX220, Japan) and mixed together forming a biherbal powder which was soaked in closed sterile, flat-bottom glass container (Borosil, India) containing whole 100 ml of analytical grade Ethanol (Hymankimia, United Kingdom), a selective solvent known as menstrum. This non-flowing system of menstrum and biherbal powder was kept in contact with each other and incubates at room temperature, with vigorous shaking at regular intervals, for seven days. At the end of seventh day of maceration -after attaining equilibrium-the solution was filtered through muslin cloth (DS Enterprises, India). The liquid extract thus expressed was known as macerate. The remained inert fibrous, insoluble and damp solid residue, called marc, was strained to recover as much occluded macerate as possible. The expressed and strained liquids are called miscella. The miscella was further filtered through a, Whattmann no.1 filter paper (Whatman, UK) was evaporated under reduced pressure in vaccuo , at below 40°C using rotary evaporator (Supervac R/185, India), which yielded a gummy residue, the analyte.

2.3 Metabolomic research using GCMS technology:

GCMS analysis was carried out at BA Laboratory, Hyderabad, Telangana State, India using Agilent gas chromatograph model 6890 NI coupled to an Agilent 5973 NI mass selective detector. The GC was fitted with a HP-5MS capillary column of 30 m X 250 μm X 0.25 μm. The temperature program was as follows: injector temperature 280°C, initial oven temperature was at 60°C, then 60 °C for 1 min, 40 °C/min to 170 °C for 0 min, 10 °C/min to 310 °C for 3 min. Helium was used as carrier gas at 8.2317 psi pressure with flow 1 mL/min. Samples were solved in chloroform and 2 µl aliquot were injected automatically. Measurement of peak areas and data processing was carried out by GCMS solution ver.2. The spectrum of the unknown/test component was compared with the spectrum of the known components stored in the NIST library. The name and retention time, molecular weight and structure of the compounds in the biherbal extract were ascertained.

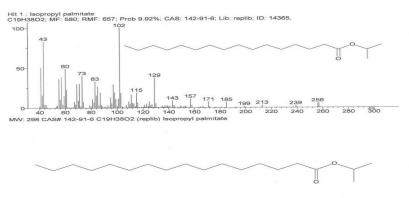
3. RESULTS

GCMS technique

GCMS running time for ethanol extract was 20.75 minutes. The total numbers of compounds identified were 14 (Table 1 and Fig 3 (Fig 3.1.0-3.14.1)).

Table 1: Fourteen compounds in ethanol extract of biherbal powder

Retention time	Compounds	Probability
10.264	Isopropyl Palmitate	9.92
10.454	Hexadecanoic acid, ethyl ester	35.6
11.031	Curan-17 oic acid- 19,20 –dihydroxy-, methyl ester, (19s)	9.58
11.735	9,12 – Octadecadienoic acid (z,z)-	16.5
11.772	Oleic acid	9.60
11.915	Linoleic acid, ethyl ester	4.80
12.146	Octadecanoic acid, ethyl ester	21.7
13.555	Eicosanoic acid	38.2
14.719	Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl) ethyl ester	18.4
15.125	Docosanoic acid	24.4
15.325	Hexadecanoic acid, ethyl ester	20.6
16.075	Tetratetracontane	6.50
16.080	Tetratetracontane	11.6
17.586	Octacosane	7.88


Fig 3 GCMS chromatogram and compounds in bi-herbal ethanol extract
Fig 3.1.0: Isopropyl Palmitate

Name: +EI Scan (10.264 min) 11149409-12.D Subtract

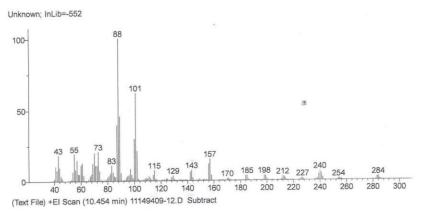
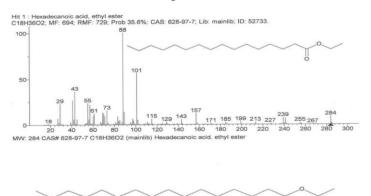

MW: N/A ID#: 7 DB: Text File

Fig 3.1.1

Name: Isopropyl palmitate Formula: C₁PH380² MW: 298 Exact Mass: 298.28718 CAS#: 142-91-6 NIST#: 70830 ID#: 14365 DB: repl Other DBs: Fine, TSCA, RTECS, USP, HODOC, NIH, EINECS

Fig 3.2.0 Hexadecanoic acid, ethyl ester



Name: +EI Scan (10.454 min) 11149409-12.D Subtract

MW: N/A ID#: 8 DB: Text File

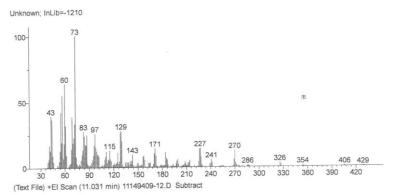


Fig 3.2.1

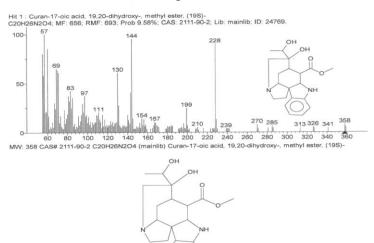
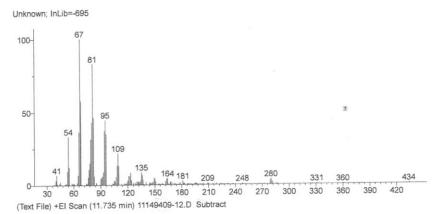

lame: Hexadecanoic acid, ethyl ester formula: C₁gHggO₂

Fig 3.3.0: Curan-17 oic acid-19,20 -dihydroxy-, methyl ester, (19s)

Name: +EI Scan (11.031 min) 11149409-12.D Subtract MW: N/A ID#: 9 DB: Text File


Fig 3.3.1

Name: Curan-17-oic acid, 19,20-dihydroxy-, methyl ester, (19S)-Formula: C₂₀HgN₂O₄ MW: 358 Exact Mass: 358.189257 CAS#: 2111-90-2 NIST#: 48471 ID#: 24769 DB: mainlib Other DB: None Contributor: CARL DJERASSI DEPT OF CHEM STANFORD UNIV STANFORD CALIF 94305

Fig 3.4.0:9, 12 - Octadecadienoic acid (z,z)-

Name: +EI Scan (11.735 min) 11149409-12.D Subtract

MW: N/A ID#: 11 DB: Text File

Fig 3.4.1

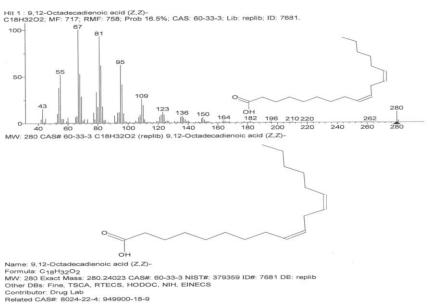
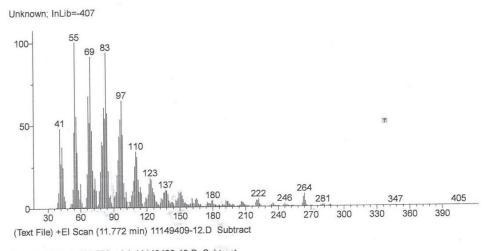
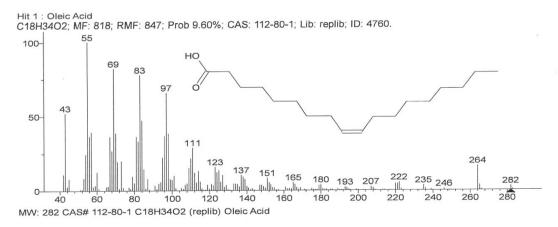



Fig 3.5.0 Oleic acid

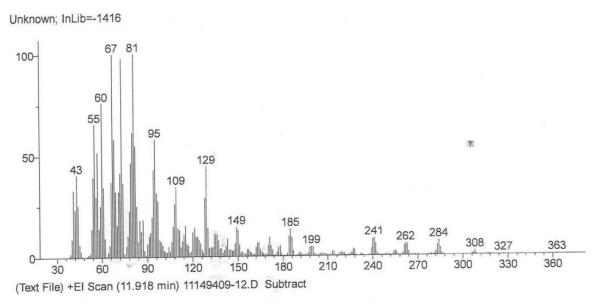



Name: +El Scan (11.772 min) 11149409-12.D Subtract

MW: N/A ID#: 10 DB: Text File

Fig 3.5.1

Name: Oleic Acid Formula: C₁₈H₃₄O₂

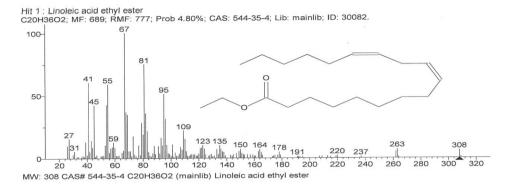

MW: 282 Exact Mass: 282.25588 CAS#: 112-80-1 NIST#: 379354 ID#: 4760 DB: replib

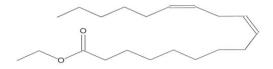
Other DBs: TSCA, RTECS, USP, HODOC, NIH, EINECS, IRDB

Contributor: Drug Lab

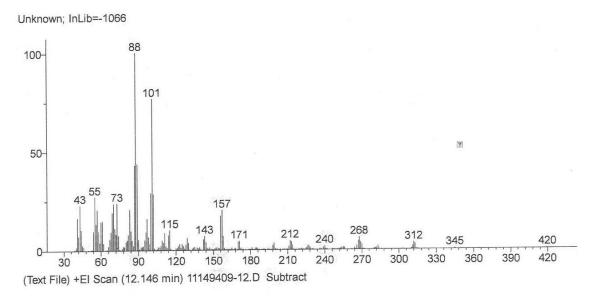
Related CAS#: 56833-51-3; 8046-01-3; 949900-16-7

Fig 3.6.0 Linoleic acid, ethyl ester



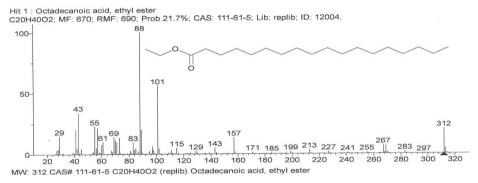

Name: +EI Scan (11.918 min) 11149409-12.D Subtract

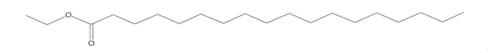
MW: N/A ID#: 12 DB: Text File


Fig 3.6.1

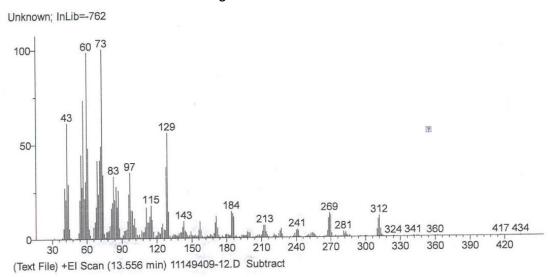
Name: Linoleic acid ethyl ester Formula: $C_{20}H_{36}O_{2}$ MW: 308 Exact Mass: 308.27153 CAS#: 544-35-4 NIST#: 155747 ID#: 30082 DB: mainlib other DBs: Fine, TSCA, HODOC, NIH, EINECS Contributor: Chemical Concepts

Fig 3.7.0 Octadecanoic acid, ethyl ester



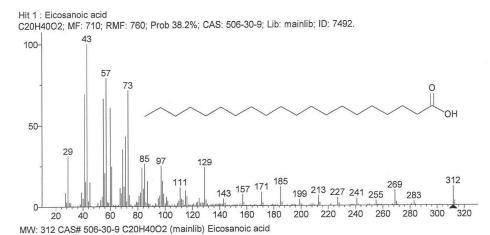

Name: +EI Scan (12.146 min) 11149409-12.D Subtract

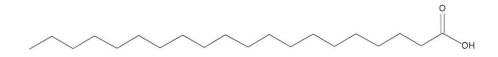
MW: N/A ID#: 13 DB: Text File


Fig 3.7.1

Name: Octadecanoic acid, ethyl ester Formula: C2₀H₄0O₂ MW: 312 Exact Mass: 312.30283 CAS#: 111-61-5 NIST#: 36393 ID#: 12004 DB: replib Other DBs: Fine, TSCA, RTECS, HODOC, NIH, EINECS, IRDB Contributor: R.T.HOLMAN,UNIVERSITY OF MINNESOTA

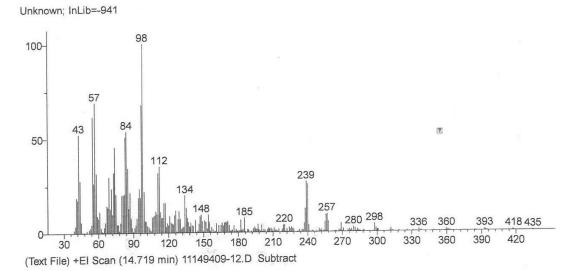
Fig 3.8.0 Eicosanoic acid




Name: +EI Scan (13.556 min) 11149409-12.D Subtract

MW: N/A ID#: 14 DB: Text File

Fig 3.8.1

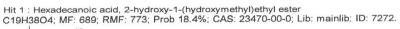

Name: Eicosanoic acid Formula: C₂₀H₄₀O₂

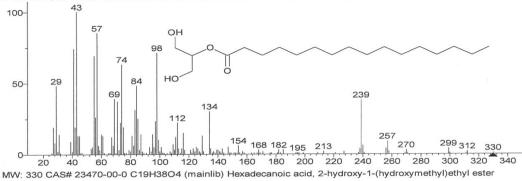
MW: 312 Exact Mass: 312.30283 CAS#: 506-30-9 NIST#: 160470 ID#: 7492 DB: mainlib

Other DBs: Fine, TSCA, RTECS, HODOC, NIH, EINECS, IRDB

Contributor: Chemical Concepts

Fig 3.9.0 Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl) ethyl ester




Name: +EI Scan (14.719 min) 11149409-12.D Subtract

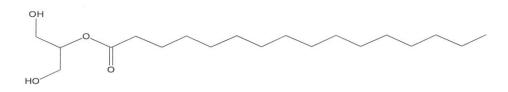
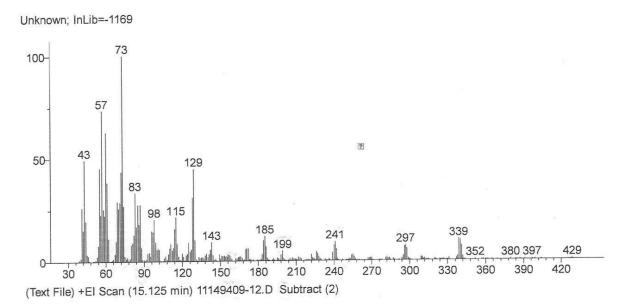
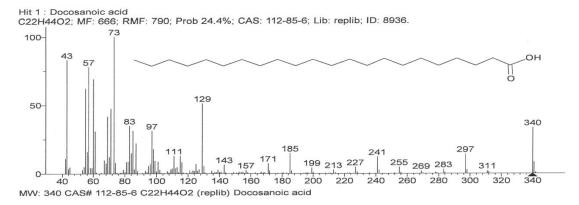

MW: N/A ID#: 15 DB: Text File

Fig 3.9.1



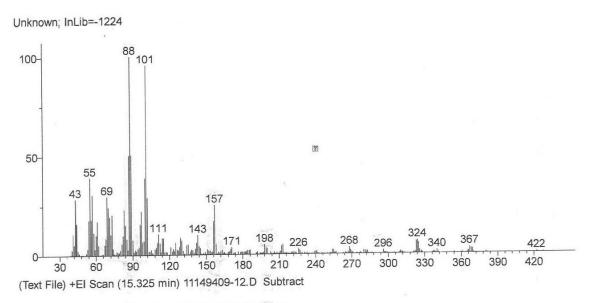
Name: Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester Formula: C₁₉H₃₈O₄ MW: 330 Exact Mass: 330.27701 CAS#: 23470-00-0 NIST#: 15400 ID#: 7272 DB: mainlib Other DBs: None Related CAS#: 75656-12-1

Fig 3.10.0 Docosanoic acid



Name: +EI Scan (15.125 min) 11149409-12.D Subtract (2)

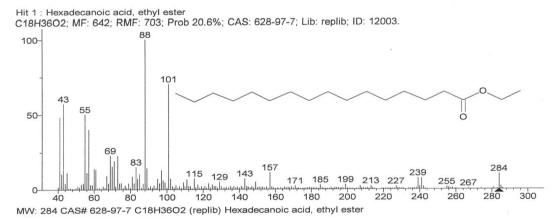
MW: N/A ID#: 16 DB: Text File

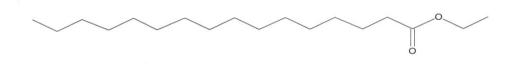

Fig 3.10.1

Name: Docosanoic acid Formula: C₂₂H₄₄O₂ MW: 340 Exact Mass: 340.334131 CAS#: 112-85-6 NIST#: 379420 ID#: 8936 DB: replib Other DBs: Fine, TSCA, HODOC, NIH, EINECS, IRDB Contributor: Drug Lab

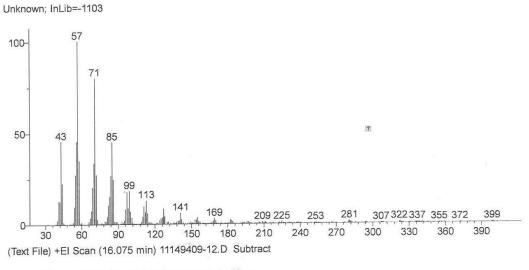
Fig 3.11.0 Hexadecanoic acid, ethyl ester

Name: +EI Scan (15.325 min) 11149409-12.D Subtract


MW: N/A ID#: 17 DB: Text File


10 largest peaks:

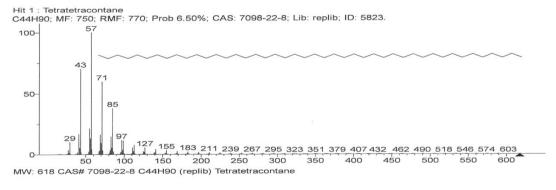
88 999 | 101 955 | 89 504 | 87 501 | 55 389 | 100 386 | 57 303 | 69 294 | 102 288 | 43 282


Fig: 3.11.1

Name: Hexadecanoic acid, ethyl ester
Formula: C18H36O2
MW: 284 Exact Mass: 284.27153 CAS#: 628-97-7 NIST#: 43659 ID#: 12003 DB: replib
Other DBs: Fine, TSCA, EPA, HODOC, NIH, EINECS, IRDB
Contributor: ACIR ALIP ETHY SE30 05 1980 E M.HORN
10 largest peaks:
88 999 | 101 700 | 43 570 | 55 500 | 41 480 | 57 400 | 69 226 | 73 224 | 71 190 | 70 152 |

Fig 3.12.0: Tetratetracontane

Name: +EI Scan (16.075 min) 11149409-12.D Subtract


MW: N/A ID#: 18 DB: Text File

10 largest peaks:

57 999 | 71 798 | 43 453 | 56 453 | 85 449 | 58 349 | 70 333 | 55 270 | 72 270 | 84 265 |

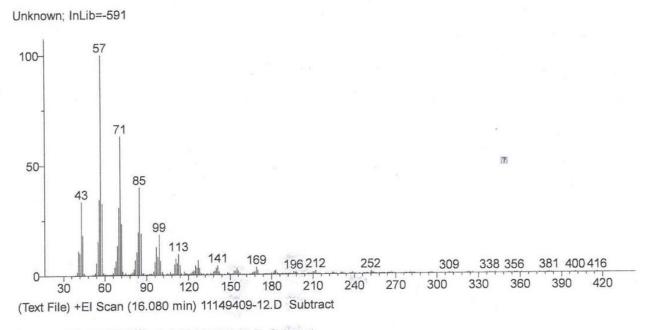
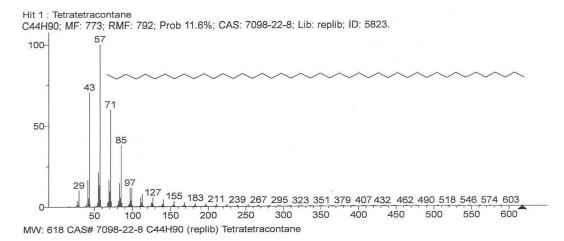


Fig 3.12.1

Name: Tetratetracontane
Formula: C44H90
MW: 618 Exact Mass: 618.704254 CAS#: 7098-22-8 NIST#: 23773 ID#: 5823 DB: replib
Other DBs: Fine, TSCA, HODOC, NIH, EINECS
10 largest peaks:
57 999 | 43 701 | 71 596 | 85 378 | 55 212 | 41 164 | 69 161 | 83 145 | 56 132 | 97 116 |

Fig 3.13.0: Tetratetracontane

Name: +EI Scan (16.080 min) 11149409-12.D Subtract


MW: N/A ID#: 19 DB: Text File

10 largest peaks:

57 999 | 71 628 | 85 396 | 56 342 | 43 333 | 58 324 | 70 306 | 72 232 | 84 193 | 86 189 |

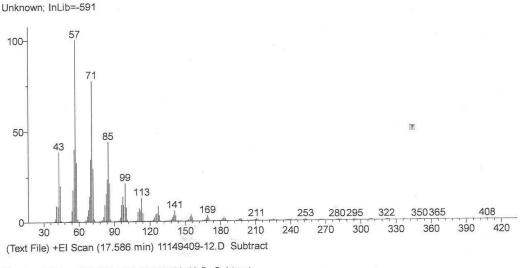
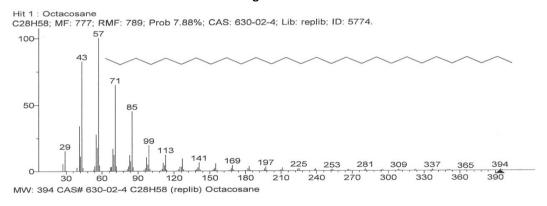


Fig 3.13.1

Name: Tetratetracontane
Formula: C₄₄H₉₀
MW: 618 Exact Mass: 618.704254 CAS#: 7098-22-8 NIST#: 23773 ID#: 5823 DB: replib
Other DBs: Fine, TSCA, HODOC, NIH, EINECS
10 largest peaks:
57 999 | 43 701 | 71 596 | 85 378 | 55 212 | 41 164 | 69 161 | 83 145 | 56 132 | 97 116 |

Fig 3.14.0: Octacosane

Name: +EI Scan (17.586 min) 11149409-12.D Subtract


MW: N/A ID#: 20 DB: Text File

10 largest peaks:

57 999 | 71 772 | 85 438 | 56 399 | 43 385 | 70 343 | 58 326 | 72 293 | 84 234 | 86 212 |

Name: Octacosane
Formula: C₂₈H₅₈
MW: 394 Exact Mass: 394.453852 CAS#: 630-02-4 NIST#: 134306 ID#: 5774 DB: replib
Other DBs: Fine, TSCA, EPA, HODOC, NIH, EINECS, IRDB
Contributor: NIST Mass Spectrometry Data Center, 1994
10 largest peaks:
57 999 | 43 823 | 71 647 | 85 449 | 41 337 | 55 274 | 99 193 | 56 174 | 69 168 | 29 151

4. DISCUSSION

The ethanol extracts of stem bark of Ficus racemosa Linn. Showed wound healing (Biswas TK et al., 2003), anti-inflammatory (Li RW et al., 2003), anti-diarrhoeal (Mukherjee PK et al., 1998) and analgesic activity (Malairajan P et al., 2006). The bark of Ficus racemosa Linn. is highly efficacious in threatened abortion and also recommended in urological disorders, diabetes, hiccough, leprosy, dysentery, asthma and piles (Padmaa MP et al., 2009). The stem and bark extracts of F. religiosa proved lethal to Ascaridia galli in vitro (De Amorin A et al., 1999). Ficus religiosa stems are known to have medicinal properties and usually used separately or as a whole plant and may contains various bioactive compounds of medicinal importance (Manorenjitha MS et al., 2013). In the light of above information, this crude ethanol bi-herbal extract or its purified fractions can be tested in-vitro for bioassay's. Also, this raw biherbal powder can be extracted with other selected solvent(s) for identifying yet another set of compounds using GCMS technique. Anti-microbial record of each compound in this set of compounds can be known from chemdb NIAID database. If Antimicrobial activity of compounds - if any - found recorded in chemdb NIAID database, there may be a hope for *in vitro* anti-microbial efficacy of either crude or purified fractions of the biherbal extract made of selected solvent.

ACKNOWLEDGMENTS

Authors are thankful to University Grants Commission, Major Research Project, and New Delhi, India Ref.no.F42-709/2013 (SR) Dated: 21/03/2013 for financial assistance for GCMS.

REFERENCE

Biswas TK and Mukherjee B (2003). Plant medicines of Indian origin for wound healing activity: A review. Int J Low Extrem Wounds 2(1):25-39

Chandrakanth MG,Gilless JK, Gowramma V, Nagaraja MG (1990). Temple forests in India's forest development. Agroforestry system 11:199-211

De AA, Borba HR, Caruta JP, Lopes D, Kaplan MA (1999).

Antihelmintic activity of the latex of *Ficus*species. J Ethnopharmacol 64:255–258

- Li RW, Myers SP, Leach DN, Lin GD and Leach G (2003). A cross cultural study: anti-inflammatory activity of Australian and Chinese plants. J Ethnopharmacol 85(1): 25-32
- Malairajan P, Geetha GK, Narasimhan S and Jessi KV (2006).

 Analgesic activity of some Indian Medicinal Plants. J Ethnopharmacol 106(3):425-428.
- Manorenjitha MS, Norita AK, Norisham S and Asmawi MZ (2013). GC-MS Analysis of bioactive components of *Ficus religiosa* (Linn.) Stem. Int J Pharm Bio Sci 4(2):99 103
- Mukherjee PK, Saha K, Murugesan T, Mandal SC, Pal M and Saha BP (1998). Screening of anti-diarrhoeal profile of some plant extracts of a specific region of West Bengal, India. J Ethnopharmacol 60(1): 85-89
- Padmaa MP, *Ficus racemosa* Linn. An overview (2009). Natural Product Radiance 8(1):84-90

Received:04.05.18, Accepted: 08.06.18, Published:01.07.2018

- Stephen I Goodman,American (1980). Review Article: An Introduction to Gas Chromatography-Mass Spectrometry and the Inherited Organic Acidemias. J Hum Genet 32:781-792
- Subramani P, Gan ST, Sokkalingm AD (2014). Polyherbal formulation: Concept of ayurveda.

 Pharmacogn Rev 8(16):73-80
- Sulekha Joshi, Savita Gupta (2011). Astroethnobotany: relationship of plants, planets and nakshatra. Ind.J.App. and Pure Bio 26(2):375-380
- Veerapur VR, Prabhakar KR, Vipan KP, Machendar RK, Ramakrishana S, Mishra B, Satish Rao BS, Srinivasan KK, Priyadarsini KI, and Unnikrishnan MK (2009). *Ficus racemosa* Stem Bark Extract: A Potent Antioxidant and a Probable Natural Radioprotector. Evid Based Complement Alternat Med 6(3): 317–324.

Corresponding Author: Ameerjani Shaik

Email: aaumeerj@yahoo.com