EVALUATION OF ANTICANCER ACTIVITY OF SOME THIOURACIL DERIVATIVES

Mosaad Sayed Mohamed 1, Mahmoud Moustafa Youns 2 and Naglaa Mohamed Ahmed* 1

1, 1* Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Eln Helwan, Post Code No.11795, Cairo, Egypt

2 Biochemistry Department, Faculty of Pharmacy, Helwan University, Eln Helwan, Post Code No.11795, Cairo, Egypt

*Corresponding Author Email: nogamoon2005@yahoo.com

ABSTRACT
Some 2-thiouracils and fused 2-thiouracils were evaluated for their cytotoxicity study. The synthesized compounds were tested for their cytotoxicity effects towards (CaCo-2) cancer cell line using SRB assay. The results showed that compound 1b displayed promising cytotoxic activity and found to be more potent than standard, doxorubicin.

KEY WORDS
2-thiouracil, fused 2-thiouracil, CaCo-2, SRB assay.

INTRODUCTION
Cancer is the second leading cause of human death [1]. Although there are many therapeutic strategies, including chemotherapy and radiotherapy, high systemic toxicity and drug resistance are the main problems in the treatment of cancer. Therefore, scientists are focused on finding new therapeutic targets for cancer and discovering novel antineoplastic drugs [2]. Pyrimidine ring is the building unit of DNA and RNA which explains the fact that pyrimidine derivatives exhibit diverse pharmacological activities. Indeed, many pyrimidine-bearing skeletons showed potent anticancer activity. For example, 2-cyanopyrimidines [3], hydrazine pyrimidine- 5-carbonitriles [4], 1, 3-dialkylated-pyrimidine- 2, 4-diones[5], aniline- 2 - (2-pyridyl) pyrimidines, 2-hydrazinyl- 4-–morpholinotheino [3,2-d] pyrimidine [6] and N-trisubstit-uted (at C2,C4 and C6) pyrimidines [7]. Different drugs such as purvalanol B, olomoucine, and its analogue roscovitine that contain pyrimidine ring are potent CDK2 inhibitors [8-10]. Additionally; 2-thiouracils are potential therapeutics as antiviral, anticancer, antibacterial and antifungal agents [11-17]. In particular, 6-n-propyl-2-thiouracil (6-PTU, 1) is antithyroid drug [18] where its S-alkylation (2) and N3-alkylation (3) products (Fig.1) have been recently reported as novel antibacterial and cytotoxic agents [19, 20].

![Chemical structures of 2-thiouracil derivatives](image_url)

A series of trifluoromethylated hexahydro-2-thiopyrimidines have been recently reported as novel cytotoxic agents against colon cancer cell line (COLO320HSR)[21]. From literature survey, it was found that 5-cyano-2-thiouracil derivatives and their condensed heterocycles exerted promising anticancer...
activity against most human cancers e.g. Breast (MCF-7), colon (HCT-116), liver (HEPG-2), leukemia (MOLT-4), cervical cancer (HELa) and renal cancer [13,22-27]. In continued quest of new anticancer agents we herein report the anticancer activity of certain thiouracil derivatives.

MATERIALS AND METHODS

Chemistry

From a series of recently synthesized thiouracil derivatives [27], ten compounds (1a, b-5a, b, Fig. 2) have been selected as representative examples of the various classes for evaluation for their antitumor activity.

![Chemical structures](image)

Reagents:
- **i:** (CH₃CO)₂O
- **ii:** ClCOOEt
- **iii:** (COOC₂H₅)₂
- **iv:** RCHO, EtOH

Fig.2. Synthetic pathway for the preparation of compounds 1-5 (a, b).

In vitro cytotoxicity activity

Thiouracils were subjected to a screening system for evaluation of their anticancer activity against cell line of human cancer, namely colon (CaCo-2)cancer obtained from pharmacology screening unit of the National Cancer Institute (NCI), Cairo University, Egypt, following the Sulfo Rhod-amine-B-stain (SRB) assay method [28] in comparison to the known anticancer drugs: Doxorubicin. The SRB assay, which was developed in 1990, is one of the most widely used methods where it relies on the ability of SRB to bind to protein components of the cells that have been fixed to tissue-culture plates by trichloroacetic acid (TCA). As the binding of SRB is stoichiometric, the amount of dye extracted from stained cells is directly proportional to the cell mass.

Materials, methods, and reagents

Fetal calf serum (FCS) was from Invitrogen Co. (Carlsbad, CA). DMEM medium was from Cambrex (New Jersey, USA). DMSO, doxorubicin, penicillin, streptomycin, and sulforhodamine B (SRB) were from Sigma Chemical Co. (St. Louis, USA). Samples: Stock solutions of compounds were prepared in DMSO and kept at 20 °C. Appropriate dilutions of the compounds were freshly prepared just prior to the assays. Final concentrations of DMSO did not interfere with the cell growth.

SRB cytotoxic assay

The cultured colon carcinoma cell CaCo-2 from the National Cancer Institute (NCI, Cairo, Egypt) is routinely maintained in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal calf serum.
serum (FCS), antibiotics (100 U/mL penicillin, 100 µg/mL streptomycin). Cells were plated in 96-multiwell plate (10^4 cells/well) for 24 h before treatment with the compounds to allow attachment of cells to the wall of the plate. Test compounds were dissolved in DMSO and diluted with saline to the appropriate volume. Different concentrations of the compound under test (0, 1, 2.5, 5, 10 µg/mL) were added to the cell monolayer. Triplicate wells were prepared for each individual dose. Monolayer cells were incubated with the compounds for 48 h at 37°C and in an atmosphere of 5 % CO₂. After 48 h, cells were fixed, washed, and stained with Sulforhodamine-B stain. Excess stain was washed with acetic acid, and attached stain was recovered with Tris-EDTA buffer. Color intensity is measured in an ELISA reader at a wavelength of 570 nm. Results are expressed as means of at least three independent experiments performed in duplicate. The results are expressed as growth inhibition of 50 % (IC₅₀) of cells (Table 1).

Table1. IC₅₀ values (in µg/mL) for cytotoxic activity of the compounds against CaCo-2 cell by SRB assay

<table>
<thead>
<tr>
<th>Compounds</th>
<th>IC₅₀ (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>44.47±7.05</td>
</tr>
<tr>
<td>1b</td>
<td>10.42±0.65</td>
</tr>
<tr>
<td>2a</td>
<td>16.73±2.12</td>
</tr>
<tr>
<td>2b</td>
<td>48.3±5.33</td>
</tr>
<tr>
<td>3a</td>
<td>15.16±0.64</td>
</tr>
<tr>
<td>3b</td>
<td>29.05±1.91</td>
</tr>
<tr>
<td>4a</td>
<td>19.27±1.65</td>
</tr>
<tr>
<td>4b</td>
<td>13.10±1.095</td>
</tr>
<tr>
<td>5a</td>
<td>16.23±1.53</td>
</tr>
<tr>
<td>5b</td>
<td>34.18±3.39</td>
</tr>
<tr>
<td>Doxorubicin</td>
<td>12±0.043</td>
</tr>
</tbody>
</table>

IC₅₀ values a (in µg/mL), which the concentration required for a 50 % of cell growth inhibition. Results are presented as a mean ± SEM of three independent experiments performed in duplicate.

RESULTS AND DISCUSSION

Cytotoxic activity
Many thiouracil derivatives have been synthesized to evaluate their antitumor activities as trial to get more effective and less toxic agents. The antitumor activity results indicated that all the tested compounds are active against CaCo-2 cell line (Table 1). Compound 1a (with hydrazine hydrate group in molecule) showed moderate cytotoxic activity against CaCo-2 cell line (IC₅₀= 44.47µg/mL), compound 1b (with three methoxy groups on phenyl ring) exhibited high anticancer activity (IC₅₀=10.42 µg/mL). Compound 2a (with triazole moiety) and 3a (with 3-methyl triazole moiety) showed significant cytotoxic activity (IC₅₀ = 16.73 and 15.16 µg/mL, respectively), while compounds 2b and 3b showed moderate cytotoxic activity (IC₅₀ = 48.3 and 29.05 µg/mL, respectively). Compounds 4a and b (with triazine moiety) showed significant cytotoxic activity (IC₅₀ = 19.27 and 13.10 µg/mL, respectively) against CaCo-2 cell line. Compound 5a (with phenyl hydrazono moiety) showed significant activity (IC₅₀ = 16.232 µg/mL) and compounds 5b showed moderate activity (IC₅₀ = 34.18 µg/mL) (Fig.3).
Fig. 3. Screening of anticancer activity by the SRB assay shows that 1b has highest activity (more potent than the reference drug (RF). Each value represents a mean ± SEM (n = 3).

CONCLUSION
The most active compound being 1b and found to be the prominent cytotoxic toward colon cancer CaCo-2 cell line in comparison with the anti tumor agent Doxorubicin as a control. In conclusion, the preliminary biological studies lead to the identification of novel cytotoxic agents. The findings demonstrate thiouracils and fused thiouracils as novel leads for further development as medicinal agents.

ACKNOWLEDGEMENTS
The authors are thankful to pharmacology screening unit of the National Cancer Institute (NCI), Cairo University, Egypt, for providing colon cancer cell line for biology work.

REFERENCES

Corresponding Author: Naglaa Mohamed Ahmed
Email: nogamoon2005@yahoo.com