SYNTHESIS AND ANTIFUNGAL ACTIVITY OF N (4-1H-BENZO [d] IMIDAZOLE -2YL) PHENYL)-2-(4-HYDROXY-6-SUSTITUTED PYRIMIDIN-2YL THIO /SULFONYL ACETAMIDE DERIVATIVES

Kumaraswamy Gullapelli¹, P.Bhaskar¹, T.Muralikrishna², G.Brahmeshwari¹*

¹Department of Chemistry, Kakatiya University, Warangal- (Telangana)-India
²Department of Biotechnology, Chaitanya Postgraduate College, (A) Hanamakonda-India-506001

*Corresponding Author Email: gbrahmeshwari@gmail.com

ABSTRACT

Synthesis of pyrimido-benzimidazole derivatives were in appreciable yield. The structures of title compounds were characterized by IR, ¹HNMR, and Mass spectral data. All of the these derivatives were evaluated for their antifungal activity against Candida albicans, Aspergillus Niger, Aspergillus flavus and Candida lunata and showed good to moderate antifungal activity as compared to standard drug Nystatin.

KEY WORDS

Synthesis, pyrimidine, benzimidazole, antifungal activity.

INTRODUCTION

Nitrogen heterocycles are often take part of immense importance as they are part of nucleic acids, vitamins, proteins and biologically molecular systems. Literature survey reveals that a large number of heterocyclic compounds containing pyrimidine moiety are majorly found to be attributed with different types of biological activities viz., insecticidal⁴, antimicrobial⁵, antiviral⁶ etc. Pyrimidines exhibits great importance in fundamental metabolisms⁴-⁶. Various analogues of thiopyrimidines such as 2-thiouracil and 2, 4-dithiouracil posses biological properties besides of their fundamental constituents of nucleic acids⁷-¹³. Benzimidazoles are known to be a group of biologically active compounds, possessing anti-viral, anti-helminthic, anti-fungal, anti-hypertensive and anti-tumor activities¹⁴-¹⁶. Accordance to these observations, it has been considered to prepare new chemical entities that containing pyrimidine and benzimidazole moieties as important potential pharmacologically important molecules.

MATERIALS AND METHODS

Melting points were determined in open capillary tubes and are uncorrected. Progress of the reaction was monitored by TLC plates, ¹H NMR spectra were recorded on a Bruker 300 MHz instrument in DMSO/CDCl₃ using TMS as internal standard. Chemical shifts (δ) are expressed in ppm. IR spectra (KBr pellet) were recorded on a Perkin-Elmer BX series FT-IR spectrometer; elemental analyses were performed on a Perkin-Elmer 240 CHN analyzer.
Scheme:

\[
\begin{align*}
\text{C}_6\text{H}_4\text{NH}_2 + \text{HOOC-} & \text{C}_6\text{H}_4\text{NH}_2 \\
\text{Refux 4h} & \quad \text{NaHSO}_4\text{-SiO}_2 \\
\text{C}_6\text{H}_4\text{N}\text{H} & \quad \text{Et}_3\text{N/dry benzene} \\
\text{stirred 5h at r.t} & \quad \text{Reflux 4h} \\
\text{C}_6\text{H}_4\text{N}\text{H} & \quad \text{Reflux 8h} \\
\text{Alcoholic KOH} & \quad \text{Dry acetone} \\
\text{Reflux, 8h} & \quad \text{H}_2\text{O}_2/\text{AcOH} \\
\text{Reflux, 3h} & \quad \text{Refux, 3h}
\end{align*}
\]

Table 1:

<table>
<thead>
<tr>
<th>Compound</th>
<th>R</th>
<th>Compound</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>4a</td>
<td>-CH\text{\textsubscript{3}}</td>
<td>5a</td>
<td>-CH\text{\textsubscript{3}}</td>
</tr>
<tr>
<td>4b</td>
<td>-Ph</td>
<td>5b</td>
<td>-Ph</td>
</tr>
<tr>
<td>4c</td>
<td>-CF\text{\textsubscript{3}}</td>
<td>5c</td>
<td>-CF\text{\textsubscript{3}}</td>
</tr>
<tr>
<td>4d</td>
<td>-CH\text{\textsubscript{2}}\text{-OCH\text{\textsubscript{3}}}</td>
<td>5d</td>
<td>-CH\text{\textsubscript{2}}\text{-OCH\text{\textsubscript{3}}}</td>
</tr>
<tr>
<td>4e</td>
<td>2-C\text{\textsubscript{6}}H\text{\textsubscript{6}}Cl</td>
<td>5e</td>
<td>2-C\text{\textsubscript{6}}H\text{\textsubscript{6}}Cl</td>
</tr>
</tbody>
</table>
Synthesis of 4-(1H-benzo[d]imidazo-2-yl) aniline (1)
A mixture of p-amino benzoic acid (0.03 mmol) and o-phenylene diamine (0.03 mmol) and NaHSO₄·SiO₂ (25% wt.) in 10 mL of ethanol was heated under reflux at 180°C for 4 h. The reaction mixture was partially cooled, poured on to crushed ice and neutralized with 10% NaOH solution. The precipitated product was collected by vacuum filtration, washed with excess 10% NaOH solution and dried and recrystallized from ethanol.

Synthesis of N-(4-(1H-benzo[d]imidazo-2-yl)phenyl)-2-chloroacetamide (2)
In an ice bath, a solution of compound 1 (10 mmol) and triethylamine (0.5 ml) in dry benzene (10 ml) was stirred for 15 min 10 mmol of Chloroacetyl chloride and triethylamine (0.5 ml) in dry benzene (10 ml) was refluxed for about 4 h. After completion of the reaction, the mixture was poured, with continuous stirring, on crushed ice. The solid formed was collected by vacuum filtration, washed with ethyl acetate, and recrystallized from ethanol.

Synthesis of 2-mercapto-6-substituted pyrimidin-4-ol (3)
A mixture of ethyl acetoacetate (substituted) (1mmol) and thio urea (1mmol) in alcoholic KOH (10 ml) was reflux for about 4 h after completion of the reaction, the solid mixture was washed with cold water to remove the excess of thio urea and then filtered. The filtrate was concentrated and the solid product was recrystallized from ethyl acetate or ethanol. The remaining compounds were prepared by similar procedure with minor change in reaction conditions. These compounds were purified by recrystallisation from suitable solvents. A similar method was used for the preparation of different derivatives (3a-e).

Synthesis of N-(4-1H-benzo (d) imidazole-2-yl phenyl)-2-(4-hydroxy-6-methyl-pyrimidin-2yl thio) acetamide (4): Equimolar mixture of compound (2), compound (3) and K₂CO₃ (1mmol) in dry acetone (50 ml) was refluxed for 8 h. After cooling, solution was evaporated until dryness. The residue was washed with water and recrystallized from ethanol. The remaining compounds were prepared by similar procedure with minor change in reaction conditions.

(4a): IR: (KBr) λ max/cm⁻¹: 3509 (-OH); 3133 (N-H, benzimidazole); 2942 (C-H, aliphatic); 1720 (C=O-NH); 1621 (C=N); 671 (C-S). ¹HNMR (DMSO d₆, 300 MHz, δ ppm): 8.0 (s, NH, benzene); 7.65-7.75 (m, 2H, ArH); 7.46 (m, 2H, ArH); 7.26 (m, 2H, ArH); 6.32 (s, 1H pyrimidine); 5.0 (s, OH pyrimidine); 5.0 (s, NH, benzimidazole); 3.87(s, 2H, CH₂-S); 2.35(s, 3H, -CH₃ pyrimidine).MS,m/z(%),392(M⁺).Anal.Calcd.For: C₂₅H₂₅N₅O₄S C,61.71;H, 4.38; N, 17.89; Found: C, 61.50;H,4.02;N,16.85.

(4b): IR: (KBr) λ max/cm⁻¹: 3514 (-OH); 3325 (N-H, benzimidazole); 2942 (C-H, aliphatic); 1725 (C=O-NH); 1618 (C=N); 674 (C-S). ¹HNMR (DMSO d₆, 300 MHz, δ ppm): 8.2 (s, NH, benzene); 7.68-7.72 (m, 4H, ArH); 7.46 7.50(m,H,ArH);7.34(m,2H,ArH);7.207.27(m,3H,ArH);6.3 5(s,1HCHpyrimidine));5.0(S,Hypryrimidine);5.0(s,NH,benz imidazol); 3.85 (s,2H, CH₂-S);MS,m/z(%),454(M⁺).Anal. Calcd. For: C₂₅H₂₅N₅O₄S; C, 53.93; H, 4.22; N, 15.49%; Found: C, 66.02; H, 4.15; N, 15.25%.

(4c): IR: (KBr) λ max/cm⁻¹: 3506 (-OH); 3317 (N-H, benzimidazole); 2938 (C-H, aliphatic); 1721 (C=O-NH); 1615 (C=N); 668 (C-S). ¹HNMR (DMSO d₆, 300 MHz, δppm):8.6 (s, NH, benzene); 7.68-7.78 (m, 4H, ArH); 7.46 (m, 2H, ArH);7.26 (m, 2H, ArH); 6.36 (s, 1H-CH pyrimidine) 5.0(S, O-Hpyrimidine)5.0(s,NH,benzimidazol);3.89(s,2H,CH₂- S);MS,m/z(%),446(M⁺).Anal. Calcd. For: C₂₅H₂₅N₅O₄S; C, 53.93; H, 3.17; N, 15.72%; Found: C, 53.02; H, 3.06; N, 15.25%.

(4d): IR: (KBr) λ max/cm⁻¹: 3510 (-OH); 3321 (N-H, benzimidazole); 2943 (C-H, aliphatic); 1732 (C=O-NH); 1608 (C=N); 665 (C-S). ¹HNMR (DMSO d₆, 300 MHz, δ ppm) 8.1 (s, NH, benzene); 7.65-7.74 (m,4H, ArH); 7.45 (m, 2H, ArH);7.26 (m, 2H, ArH); 6.32(s, 1H-CH pyrimidine) 5.0 (s,-OH pyrimidine)5.0(s,NH, benzimidazol);3.86(s, 2H, CH₂-S); 4.64 (s, 2H, CH₂ O);MS,m/z(%),422(M⁺); Anal. Calcd. For: C₂₅H₂₅N₅O₄S; C, 56.53; H, 3.89; N, 16.32%; Found: C, 56.02; H, 3.32; N, 15.85%.
(4e)IR (KBr) λmax/cm⁻¹: 3510 (-OH); 3321 (N-H, benzimidazole); 2943 (C-H, aliphatic); 1732 (C=O-NH); 1608 (C=N); 665 (C=S).¹HNMR (DMSO d₆, 300 MHz, δ ppm): 8.3 (s, NH, benzene); 7.68-7.70 (m, 4H, ArH); 7.42-7.50 (m, 3H, ArH); 7.34 (m, 2H, ArH); 7.20-7.27 (m, 3H, ArH); 6.35 (s, 1H, CH-pyrimidine); 5.0 (s, NH, benzimidazole); 3.85 (s, 2H, SO₂CH₂). MS, m/z(%): 488(M⁺); 489(M⁺); 489(M⁺). Anal. Calcd. For: C₂₂H₁₄N₂O₅S; C, 56.68; H, 3.32; N, 14.15%; Found: C, 56.10; H, 3.32; N, 14.15%.

Synthesis of N-(4-1Hbenzo (d) imidazole-2-y1) phenyl-2-(4-hydroxy-6 methyl-pyrimidin-4yl) sulfonyle acetamide (5):

An ice cold solution the compound 4 (1mmol) in glacial acetic acid (30 ml) was treated with 30% H₂O₂ (20 ml) in portions. The reaction mixture was allowed to attain laboratory temperature and then refluxed for 3h. The reaction mixture was cooled and acetic acid was removed in vacuo. The residual portion was cooled by filtration and was further purified by recrystallization using water. The remaining compounds were prepared by similar procedure with minor change in reaction conditions.

(105a)IR: (KBr) λmax/cm⁻¹: 3496 (-OH); 3358 (N-H, benzimidazole); 2885 (C-H, aliphatic); 1705 (C=O-NH); 1631 (C=N); 1168 (-SO₂); 681 (C-S).¹HNMR (DMSO d₆, 300 MHz, δ ppm): 8.2 (s, NH, benzene); 7.74 (m, 2H, ArH); 7.60-7.40 (m, 4H, ArH); 7.28 (m, 2H, ArH); 6.36 (s, 1H, ArH, pyrimidine); 6.0 (s, 1H, -OH-pyrimidine); 5.0 (s, O-H, pyrimidine); 4.35 (s, 2H, SO₂CH₂); 2.39 (s, 3H, -CH₃, pyrimidine). MS, m/z (%) 423(M⁺). Anal. Calcd. For: C₂₂H₁₈N₂O₅S; C, 56.74; H, 4.02; N, 16.52%; Found: C, 56.68; H, 4.01; N, 16.48%.

(105b)IR: (KBr) λmax/cm⁻¹: 3510 (-OH); 3319 (N-H, benzimidazole); 1727 (C=ONH); 1620 (C=N); 1114 (-SO₂); 672 (C-S).¹HNMR (DMSO d₆, 300 MHz, δ ppm): 8.0 (s, 1H, NH, benzene); 7.72 (m, 2H, ArH); 7.50 (m, 2H, ArH); 7.38-7.24 (m, 7H, ArH); 6.42 (s, 1H, CH, pyrimidine); 5.66 (s, 1H, OH, pyrimidine); 5.0 (s, 1H, NH, benzimidazole); 4.42 (s, 2H, SO₂CH₂). MS, m/z (%) 485(M⁺). Anal. Calcd. For: C₂₂H₁₈N₂O₅S; C, 51.85; H, 3.91; N, 14.43%; Found: C, 51.83; H, 3.89; N, 14.42%.

(105c)IR: (KBr) λmax/cm⁻¹: 3503 (-OH); 3356(N-H, benzimidazole); 1710 (C=ONH); 1628 (C=N); 1114 (-SO₂); 682 (C-S).¹HNMR(DMSO d₆, 300 MHz, δ ppm): 8.4(NH, benzene); 7.70 (m, 4H, ArH); 7.607.40 (m, 4H, ArH); 7.28 (m, 2H, ArH); 6.36 (s, 1H, ArH, pyrimidine); 5.0 (s, SO₂CH₂, pyrimidine). 5.0 (s, 2H, SO₂CH₂); MS, m/z (%) 477(M⁺). Anal. Calcd. For: C₂₂H₁₈N₂O₅S; C, 50.32; H, 2.92; N, 14.67%; Found: C, 50.62; H, 2.95; N, 14.72%.

(105d)IR: (KBr) λmax/cm⁻¹: 3508 (-OH); 3349 (N-H, benzimidazole); 1717 (C=ONH); 1636 (C=N); 1119 (-SO₂); 672 (C-S).¹HNMR (DMSO d₆, 300 MHz, δ ppm): 8.2 (s, NH, benzene); 7.74 (m, 4H, ArH); 7.45 (m, 2H, ArH); 7.28 (m, 2H, ArH); 6.83 (s, 1H, ArH, pyrimidine) 6.2 (s, 1H, -OH pyrimidine); 5.1 (s, SO₂CH₂, pyrimidine) 5.0 (s, 2H, SO₂CH₂). MS, m/z (%) 454(M⁺). C₂₂H₁₈N₂O₅S; C, 55.62; H, 4.22; N, 15.44%; Found: C, 50.61; H, 4.17; N, 15.45%.

(105e)IR: (KBr) λmax/cm⁻¹: 3503(-OH); 3329 (N-H, benzimidazole); 1708 (C=ONH); 1648 (C=N); 1123 (-SO₂); 676 (C-S).¹HNMR (DMSO d₆, 300 MHz, δ ppm): 8.5 (s, NH, benzene); 7.72 (m, 4H, ArH); 7.33-7.45 (m, 4H, ArH); 7.16-7.26 (m, 4H, ArH); 7.0 (s, 1H, ArH, pyrimidine) 6.4 (s, 1H, -OH pyrimidine); 5.0 (s, SO₂CH₂, pyrimidine); 5.0 (s, 2H, SO₂CH₂); MS, m/z (%) 520(M⁺). 522(M⁺). Anal. Calcd. For: MS, m/z (%) 454 (M⁺). C₂₂H₁₈N₂O₅S; C, 57.76; H, 3.49; N, 13.46%; Found: C, 57.81; H, 3.42; N, 13.48%.

Antifungal activity

The following fungal species are used to assess the antifungal activity of compounds, they are Candida albicans MTCC 227, Aspergillus niger MTCC 282, Aspergillus clavatus MTCC 1323, Candida latona MTCC 226, these were obtained from Fungal Culture Collection Laboratory, Department of Microbiology, Kakatiya University, Warangal, Telangana.

Media for fungal cultures

Sabourud’s Dextrose Agar Medium (SDA)

Peptone 10.00 g

Dextrose 40.00 g

Agar 20.00 g, Distilled water 1000 mL

International Journal of Pharmacy and Biological Sciences (e-ISSN: 2230-7605)
pH 6.8

Assay
The antifungal activity of synthesized compounds was determined by agar well diffusion method17. The culture plates inoculated with test organisms were allowed to solidify and punched with sterile cork borer (7.0 mm diameter) to make open wells. The open wells were filled with 0.05 mL or 50 μL of the test compounds. The test was carried out on SDA Plates and incubated at 30°C and 22°C, respectively for 72 hrs. The test organisms were sub-cultured using potato-dextrose-agar medium. The tubes containing sterilized medium were inoculated with test fungi and after incubation at 37°C for 48 hours, they were stored at 4°C in refrigerator. The zones of inhibition were measured and recorded.

Table 2: Antifungal activity of compounds tested against various fungal pathogens.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Conc.</th>
<th>Zone of inhibition in mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>C. albicans</td>
</tr>
<tr>
<td>104a</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>104b</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>104c</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>104d</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>104e</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>105a</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>105b</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>105c</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>105d</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>105e</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>Standard</td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

RESULTS AND DISCUSSION
Current study reports the devoted towards the research and development of highly efficient heterocyclic molecules with therapeutic potential. Efforts of our studies includes the synthesis of pyrimido benzimidazoles derivatives (4&5) synthesized by different substituent basing on pyrimidine ring. The starting material 2-(4-amino phenyl) benzimidazole is synthesized by using NaHSO\textsubscript{4}-SiO\textsubscript{2}, it is a heterogeneous and eco friendly catalyst18 the target compounds were synthesized according to procedure.

The data reveal that the compounds 4c, 5c have excellent antifungal activity against the test fungi and nearly equal to the standard drug. Compounds 4e, 5e have showed moderate to activity where as the remaining showed least activity. The compounds (5) showed better activity than the compounds (4), because sulfonyl group is more active than the thio group.

CONCLUSION
The present study reports successful synthesis of compounds 4 (a-e) and 5 (a-e) in good yield and these compounds exhibit moderate anti-fungal activity.
ACKNOWLEDGEMENT
We sincerely thanks to Head, Department of Chemistry, Kakatiya University, Warangal for his support and encouragement.

REFERENCES