

Research Article | Biological Sciences | Open Access | MCI Approved

# Isolation and Characterization of Multi Drug Resistant Escherichia coli Isolated from **Urinary Tract Infected Patients**

Mukesh Kumar<sup>1</sup> and Java Bharti<sup>2</sup> <sup>1 and 2</sup>Mewar University Gangrar Chittorgarh Raj

Received: 04 Jul 2019 / Accepted: 06 Aug 2019 / Published online: 1 Oct 2019

\*Corresponding Author Email: bhargav@syncorp.in

### **Abstract**

Incessant uses of antibiotics cause the antibiotic resistance, enhance special pattern of antibiotic resistance among the E. coli isolates which are obtain from patient surfing with urinary tract infection (UTI). This study was conducted to spot and isolate resistant multi drug uropathogenic Escherichia coli from piddle sample of tract infected patients by ancient techniques. Fifty-seven (57) UTI piddle samples were collected from patients admitted to near ELITE DIAGNOSTIC CENTRE BHILWARA (RAJ). Out of fifty-seven piddle samples, forty samples square measure positive for *E. coli* among that twenty-two samples square measure collected from females and eighteen from male. Growth for E. coli confirmed by culture characteristics (Table five.1) and then different biochemical test (Table five.2). Characterization of isolated strains resolve by biochemical tests included indole, oxidase, catalase, methyl red, voges proskauer, citrate utilization, hemolytic, motility and microscopic finding done by Gram staining. Sensitivity pattern of isolates were determined against antibiotics. From this study, it had been discovered that 70.17% isolates were gram negative. The E. coli positive samples square measure shows indole, enzyme (+ve) and VP, PYR, OXIDASE, UREASE, citrate Utilization (-VE) (table five.2). Positive samples square measure any analyzed for antibiotic susceptibleness testing among 40 samples 33 square measure showing resistance for quite 15 antibiotics. 2 samples were resistance for quite 20 antibiotics. different sample square measure resistance for concerning 5 to 10 antibiotics table (5.3, a, b, c). Out of 57 sample 40 uropathogenic *E. coli* was isolated and every one of them has been multi drug resistant.

Multi drug resistant, uropathogenic Escherichia coli, disc agar diffusion, antibiotic susceptibleness.

#### **INTRODUCTION**

In 1885, the German-Austrian baby doctor Theodor Escherich revealed coli bacteria inside the stool of healthy individual. These bacteria referred to as microorganism coli community as an effect of it's

found inside the colon. (1) In 1996 the world's worst happening illness occurred in Wishaw, Scotland, of E. coli killing twenty folks Most E. coli strains square measure harmless, however some serotypes square measure infective and might cause serious urinary



tract infections. Whereas some might profit their hosts by manufacturing vitamin k2, and by preventing the institution of infective bacterium at intervals the intestine [3] 91% of tract infections (UTI) seen in people with standard anatomy Uropathogenic *E. coli* (UPEC) is answerable for just about. In ascending infections, dirty bacterium colonize the urethra and spread up the urinary tract to the bladder as well as to the kidneys (causing pyelonephritis-Pyelonephritis is inflammation of the kidney, usually due to a microbial infection. Symptoms most frequently included tenderness etc. as a result of girls have a shorter channel than men, they're fourteen times a lot of seemingly to suffer from associate ascending UTI [6][7]. Uropathogenic E.coli use fimbriae for adherence on the surface of urothepithelial and bladder.

Antibiotics are typically used for the treatment of Bacterial infection. However, the antibiotic sensitivities of various strains of *E. coli* vary wide. As gram negative organisms, E. coli square measure proof against several antibiotics that square measure effective against gram-positive organisms. Antibiotics which can be accustomed treat **E. coli** infection embody Trimox, yet as different. Semisynthetic, penicillin's, many cephalosporin's, carbapenems, aztreonam, trimethoprim sulfamethoxazole, antibiotic drug, Macrodantin and therefore the aminoglycosides. Antibiotic resistance may be a growing downside. E. coli bacterium typically carry multiple drug resistance plasmids, and below stress, pronto transfer those plasmids to different species. Intermixture of species within the intestines permits E. coli to simply accept and transfer plasmids from different bacterium. Thus, E. coli and therefore the different enteric square measure vital reservoirs of transferable antibiotic resistance [10]. Sometimes, the term antibiotic which suggests "opposing life", they will either kill or inhibit the expansion of bacterium.

#### **MATERIALS AND METHODS**

Culture Media and Chemicals:- Mueller-Hinton broth, Mac Conkey agar, Simmon's Citrate agar, cled agar, Michrome agar, Antibiotic discs such as penicillin G, ampicillin, chloramphenicol, tobramycin, levofloxacin, nitrofurantioinorfloxacin, ciprofloxacin, amikacin cephotaxime gentamycin, streptomycin, erythromycine tetracycline, and imipenem, meropenem, cefepime, cefazolin, aztreonam, netilmycin, doxycycline, colistin, imipenem, cefazolin, ceftazidime, meropenem, aztreonam, minocycline, Sodium chloride (Nacl), hydrogen peroxide (H2O2), sucrose, lactose, glucose, galactose, potassium dihydrogen phosphate (KH2PO4), di potassium hydrogen phosphate (K2HPO4), sodium hydroxide (NaOH), potassium chloride (Kcl), Goa, India. All other chemicals were from A Division of tulip diagnostics (P) Ltd., Microxpress Pvt. Ltd

#### **COLLECTION AND TRANSPORT OF SAMPLE**

Fifty-seven (57) UTI patient's urine samples were collected from patients admitted in hospitals nearby Elite diagnostic and imaging centre bhilwara according to their infection history and treatment summary during a one-month period from June 03, 2019 to July 10, 2019. Those urine samples were collected in 'clean catch' with sterile clean bottles. Then used the autoclaved for sterilization of different media. Inoculation of sample was performed within 2 hours of the collection.

**ISOLATION OF** *E. coli*. Urine inoculated in Mac Conkey agar and cled agar was incubated in an incubator at 37°C for overnight. Isolates were characterized on the basis of culture characteristic (Patrick R. et al (Manual clinical microbiology 9tha ED.

Quality control strains. Shigella flexneri ATCC 12022, S. aurous ATCC 25923, Salmonella typhimurium ATCC 14028, *E. coli* ATCC 25922, *E. faecalis* ATCC 29212, Pseudomonas *aeruginosa*, ATCC 27853, *Enterobactor aerogenes* ATCC 13048, *Proteus vulgaris* ATCC 13315, and Acinetobacter calcoaceticus ATCC 19606 were obtained from Elite diagnostic and imaging centre Bhilwara. These strains were stored in agar slants at 4°C for further studies as reference strains

**IDENTIFICATION AND CHARACTERIZATION OF** *E.coli* Isolate identified on the basis of culture characteristics, biochemical test and microscopic examination. *E.coli* ATCC 25922 was taken as positive control for identification of all the test result.

**CULTURE CHARACTERISTIC.** Bacteria grow on Mac Conkey agar and cled agar media used for identified culture characteristics.

**Microscopy.** Gram staining of isolates was performed according to standard method. (Duguid JP, 1999).

#### **BIOCHEMICAL CHARACTERIZATION TESTS**

Catalase Test. For slide catalase test, 2-3 colonies of isolates were taken from NA plate with sterile loop and spotted onto the centre of a glass slide. One drop of 3-6% H2O2 was added on it and observed the vigorous bubbling within 10 seconds. For tube catalase test, 200µl of 3-6% hydrogen peroxide (H2O2) was taken in a test tube. A colony of isolates was taken from NA plate with disposable loop and rubbed onto the inside wall of the test tube and



examined the vigorous bubbling within 10 seconds. Proteus vulgaris ATCC 29906 and E. faecalis ATCC 29212 were taken as positive and negative control respectively (MacFaddin JF. 2000).

Oxidase Test. Oxidase test with a disposable loop some fresh growth of isolates from NA plate was scraped and rubbed onto the filter paper and examined for the blue colour within 10 seconds Oxidase test of isolates was performed by filter paper method according to Snell et al. (Snell et al.1999). S.aureus ATCC 25923 and Proteus vulgaris ATCC 29906 were taken as positive and negative control respectively.

Indole Test. Indole test Development of a red/pink layer on top of the media was considered as positive result whereas absence of red colour was the indication of negative result. Shortly, bacterial isolates were grown on TSB (tryptic soy broth) for 48 hours. After that Kovac's reagent was added to those culture media. Proteus vulgaris ATCC 29906 and Pseudomonas aeruginosa 27853 were taken as positive and negative control strains respectively. Indole test was done according to standard method (Finger gold et al. 1974).

Antibiotic Susceptibility Test by Disc Agar Diffusion Antimicrobial susceptibility was determined by the Kirby-Bauer disk diffusion method Dashet al., (Dash et al., 2012) and according to the method of Chakraborty SP et al. 2011b. The tested bacterium

was from an overnight culture (inoculated from a single colony) and freshly grown for 4 hours at approximately 106 CFU/ml. With this culture, a bacterial lawn was prepared on Mueller-Hinton agar.

#### RESULT

In the present study, 57 urine samples were collected from patient which are admitted in hospital nearby Elite diagnostic and imaging centre, Bhilwara. Out of 57 urine samples, 40 samples are positive for E.coli among which 22 samples are collected from females and 18 from male . Growth for E.coli confirmed by culture characteristics (Table.1) and further by different biochemical test (Table .2). Morphological characters were examining by gram staining techniques.

All positive samples were used for identification of antibiotic resistance. Antibiotic sensitivity testing by disk diffusion method was carried out for all 40 isolates among which 33 isolates were showing drug resistance for more than 15 antibiotics. The E.coli positive samples are shows indole, catalase (+ve) and VP , PYR, OXIDASE, UREASE, Citrate Utilization (-VE) (table .2). Positive samples are further analyzed for antibiotic susceptibility testing among 40 sample 33 are showing resistance for more than 15 antibiotics. Two samples were resistance for more than 20 antibiotics. Other sample are resistance for about 5 to 10 antibiotics.

**Table 1: -Culture Characteristic** 

| Sample | Gram Staining<br>&<br>Pathogen | Colony<br>Forms | <b>Color</b> pigmentation | Height (elevation) | Edge<br>(Margin) | Size<br>(mm) |
|--------|--------------------------------|-----------------|---------------------------|--------------------|------------------|--------------|
| Slu    | -ve<br>E.coli                  | circular        | Pinkesh                   | Flat               | Entire           | 1mm          |
| S2u    | -ve<br>Pseudomonas spp         | Irregular       | Color less                | Raised             | Undulate         | 3-4mm        |
| S3u    | +ve<br>Staphylococci Spp       | Irregular       | slightly pink             | Raised             | Entire           | 1mm          |
| S4u    | -ve<br>Pseudomonas spp         | Irregula        | Pinkesh                   | Raised             | Entire           | 2mm          |
| S5u    | -ve<br>E.coli                  | circular        | slightly pink             | Raised             | Entire           | 1-2mm        |
| S6u    | -ve<br>E.coli                  | circular        | Pinkesh                   | Raised             | Entire           | 1-2mm        |
| S7u    | -ve<br>Pseudomonas spp         | Irregular       | Color less                | Raised             | Undulate         | 3-4mm        |
| S8u    | -ve<br>E.coli                  | circular        | Pinkesh                   | Raised             | Entire           | 1-2mm        |
| S9u    | -ve<br>Pseudomonas spp         | Irregular       | Color less                | Raised             | Undulate         | 3-4mm        |
| S10u   | +ve<br>Staphylococci Spp       | Irregular       | slightly pink             | Raised             | Entire           | 1mm          |
| S11u   | -ve<br>E.coli                  | circular        | Pinkesh                   | Raised             | Entire           | 1-2mm        |
| S12u   | -ve<br>Pseudomonas spp         | Irregular       | Color less                | Raised             | Undulate         | 3-4mm        |
| S13u   | -ve<br><i>E.coli</i>           | circular        | Pinkesh                   | Raised             | Entire           | 1-2mm        |
| S14u   | -ve<br>E.coli                  | circular        | Pinkesh                   | Raised             | Entire           | 1-2mm        |
| S15u   | -ve<br>Pseudomonas spp         | Irregular       | Color less                | Raised             | Undulate         | 3-4mm        |



| S16u | -ve<br>E.coli        | circular  | Pinkesh       | Raised  | Entire   | 1-2mm     |
|------|----------------------|-----------|---------------|---------|----------|-----------|
| S17u | -ve                  | circular  | Pinkesh       | Raised  | Entire   | 1-2mm     |
| 51/u | E.coli               | Circular  | Filikesii     | Kaiseu  | Entire   | 1-2111111 |
| S18u | -ve                  | circular  | Pinkesh       | Raised  | Entire   | 1-2mm     |
| 5100 | E.coli               | Circular  | Tillikesii    | Raised  | Limit    | 1-211111  |
| S19u | -ve                  | circular  | Pinkesh       | Raised  | Entire   | 1-2mm     |
| 5174 | E.coli               | Circular  | 1 mkcsii      | raisea  | Limit    | 1-2111111 |
| S20u | -ve                  | Irregular | Color less    | Raised  | Undulate | 3-4mm     |
| 2200 | Pseudomonas spp      | 111.08    | 00101 1035    |         |          |           |
| S21u | -ve                  | circular  | Pinkesh       | Raised  | Entire   | 1-2mm     |
|      | E.coli               |           |               |         |          |           |
| S22u | -ve                  | Irregular | Color less    | Raised  | Undulate | 3-4mm     |
|      | Pseudomonas          |           |               |         |          |           |
|      | Spp                  |           |               |         |          |           |
| S23u | -ve                  | circular  | Pinkesh       | Raised  | Entire   | 1-2mm     |
|      | E.coli               |           |               |         | <u> </u> |           |
| S24u | -ve                  | circular  | Pinkesh       | Raised  | Entire   | 1-2mm     |
| ~    | E.coli               |           |               |         |          |           |
| S25u | -ve                  | circular  | Pinkesh       | Raised  | Entire   | 1-2mm     |
| 626  | E.coli               | т 1       | C 1 1         | D : 1   | TT 1 1 4 | 2.4       |
| S26u | -ve                  | Irregular | Color less    | Raised  | Undulate | 3-4mm     |
| S27u | Pseudomonas spp      | circular  | Pinkesh       | Raised  | Entire   | 1-2mm     |
| 32/u | -ve<br>E.coli        | circular  | Filikesii     | Raised  | Entire   | 1-2111111 |
| S28u | -ve                  | circular  | Pinkesh       | Raised  | Entire   | 1-2mm     |
| 520u | E.coli               | Circular  | Tillikesii    | Raised  | Limit    | 1-211111  |
| S29u | -ve                  | circular  | Pinkesh       | Raised  | Entire   | 1-2mm     |
| 5274 | E.coli               | circular  | 1 IIIICSII    | ransea  | Bittie   | 1 211111  |
| S30u | -ve                  | circular  | Pinkesh       | Raised  | Entire   | 1-2mm     |
|      | E.coli               |           |               |         |          |           |
| S31u | -ve                  | circular  | Pinkesh       | Raised  | Entire   | 1-2mm     |
|      | E.coli               |           |               |         |          |           |
| S32u | -ve                  | circular  | Pinkesh       | Raised  | Entire   | 1-2mm     |
|      | E.coli               |           |               |         |          |           |
| S33u | -ve                  | circular  | Pinkesh       | Raised  | Entire   | 1-2mm     |
| ~ .  | E.coli               |           |               | D 1 1   |          |           |
| S34u | -ve                  | circular  | Pinkesh       | Raised  | Entire   | 1-2mm     |
| 025  | E.coli               | . 1       | D: 1 1        | D : 1   | E .:     | 1.0       |
| S35u | -ve                  | circular  | Pinkesh       | Raised  | Entire   | 1-2mm     |
| S36u | E.coli               | Irragular | slightly pink | Daisad  | Entire   | 1         |
| 330u | +ve                  | Irregular | sugnity pink  | Raised  | Entire   | 1mm       |
| S37u | Enterococcus spp -ve | circular  | Pinkesh       | Raised  | Entire   | 1-2mm     |
| 33/u | E.coli               | Circulat  | 1 IIIKCSII    | Raiscu  | Linne    | 1-2111111 |
| S38u | -ve                  | circular  | Pinkesh       | Raised  | Entire   | 1-2mm     |
| 5500 | E.coli               | circular  | 1 IIIICSII    | Tailsea | Limit    | 1 2111111 |
| S39u | -ve                  | circular  | Pinkesh       | Raised  | Entire   | 1-2mm     |
| 2274 | E.coli               |           |               |         |          |           |
|      | 1 =                  | 1         | 1             | I       | 1        |           |



| S40u | -ve<br>E.coli            | circular  | Pinkesh       | Raised | Entire   | 1-2mm |
|------|--------------------------|-----------|---------------|--------|----------|-------|
| S41u | -ve                      | circular  | Pinkesh       | Raised | Entire   | 1-2mm |
| S42u | E.coli<br>-ve            | Irregular | Color less    | Raised | Undulate | 3-4mm |
|      | Pseudomonas spp          |           |               |        |          |       |
| S43u | -ve<br>E.coli            | circular  | Pinkesh       | Raised | Entire   | 1-2mm |
| S44u | -ve<br>E.coli            | circular  | Pinkesh       | Raised | Entire   | 1-2mm |
| S45u | +ve                      | Irregular | slightly pink | Raised | Entire   | 1mm   |
| S46u | Staphylococci Spp<br>-ve | circular  | Pinkesh       | Raised | Entire   | 1-2mm |
| S47u | E.coli<br>-ve            | circular  | Pinkesh       | Raised | Entire   | 1-2mm |
|      | E.coli                   |           |               |        |          |       |
| S48u | -ve<br>E.coli            | circular  | Pinkesh       | Raised | Entire   | 1-2mm |
| S49u | -ve<br>E.coli            | circular  | Pinkesh       | Raised | Entire   | 1-2mm |
| S50u | +ve<br>Staphylococci Spp | Irregular | slightly pink | Raised | Entire   | 1mm   |
| S51u | -ve<br>E.coli            | circular  | Pinkesh       | Raised | Entire   | 1-2mm |
| S52u | +ve<br>Staphylococci Spp | Irregular | slightly pink | Raised | Entire   | 1mm   |
| S53u | -ve<br>E.coli            | circular  | Pinkesh       | Raised | Entire   | 1-2mm |
| S54u | -ve<br>E.coli            | circular  | Pinkesh       | Raised | Entire   | 1-2mm |
| S55u | +ve<br>Staphylococci Spp | Irregular | slightly pink | Raised | Entire   | 1mm   |
| S56u | -ve                      | circular  | Pinkesh       | Raised | Entire   | 1-2mm |
| S57u | -ve<br>E.coli            | circular  | Pinkesh       | Raised | Entire   | 1-2mm |



Table 2: Standard biochemical tests for clinical isolates, collected from urine sample of UTI patient. ND = Tests are not done, + ve = tests are positive, - ve = tests are negative, F=Female, M=Male

| Tests are not done, + ve = tests are positive, - ve = tests are negative, F=Female, M=Male |                   |                  |        |         |          |     |     |        |                        |            |  |
|--------------------------------------------------------------------------------------------|-------------------|------------------|--------|---------|----------|-----|-----|--------|------------------------|------------|--|
| Sample                                                                                     | Isolates<br>& sex | Gram<br>Staining | Indole | Oxidase | Catalase | PYR | VP  | Urease | Citrate<br>Utilization | Result     |  |
| S1                                                                                         | Urine<br>Male     | -ve              | +ve    | -ve     | +ve      | -ve | -ve | -ve    | -ve                    | E.coli     |  |
| S2                                                                                         | Urine<br>Male     | -ve              | ND     | ND      | ND       | ND  | ND  | ND     | ND                     | Pseu. spp  |  |
| S3                                                                                         | Urine<br>Female   | +ve              | ND     | ND      | ND       | ND  | ND  | ND     | ND                     | Staph. spp |  |
| S4                                                                                         | Urine<br>Male     | -ve              | ND     | ND      | ND       | ND  | ND  | ND     | ND                     | Pseu. spp  |  |
| S5                                                                                         | Urine<br>Male     | -ve              | +ve    | -ve     | +ve      | -ve | -ve | -ve    | -ve                    | E.coli     |  |
| S6                                                                                         | Urine<br>Female   | -ve              | +ve    | -ve     | +ve      | -ve | -ve | -ve    | -ve                    | E.coli     |  |
| S7                                                                                         | Urine<br>Female   | -ve              | ND     | ND      | ND       | ND  | ND  | ND     | ND                     | Pseu. spp  |  |
| S8                                                                                         | Urine<br>Female   | -ve              | +ve    | -ve     | +ve      | -ve | -ve | -ve    | -ve                    | E.coli     |  |
| S9                                                                                         | Urine<br>Male     | -ve              | ND     | ND      | ND       | ND  | ND  | ND     | ND                     | Pseu. spp  |  |
| S10                                                                                        | Urine<br>Female   | +ve              | ND     | ND      | ND       | ND  | ND  | ND     | ND                     | Staph. spp |  |
| S11                                                                                        | Urine<br>Male     | -ve              | +ve    | -ve     | +ve      | -ve | -ve | -ve    | -ve                    | E.coli     |  |
| S12                                                                                        | Urine<br>Male     | -ve              | ND     | ND      | ND       | ND  | ND  | ND     | ND                     | Pseu. spp  |  |
| S13                                                                                        | Urine<br>Male     | -ve              | +ve    | -ve     | +ve      | -ve | -ve | -ve    | -ve                    | E.coli     |  |
| S14                                                                                        | Urine<br>Male     | -ve              | +ve    | -ve     | +ve      | -ve | -ve | -ve    | -ve                    | E.coli     |  |
| S15                                                                                        | Urine<br>Male     | -ve              | ND     | ND      | ND       | ND  | ND  | ND     | ND                     | Pseu. spp  |  |
| S16                                                                                        | Urine<br>Male     | -ve              | +ve    | -ve     | +ve      | -ve | -ve | -ve    | -ve                    | E.coli     |  |
| S17                                                                                        | Urine<br>Female   | -ve              | +ve    | -ve     | +ve      | -ve | -ve | -ve    | -ve                    | E.coli     |  |
| S18                                                                                        | Urine<br>Female   | -ve              | +ve    | -ve     | +ve      | -ve | -ve | -ve    | -ve                    | E.coli     |  |
| S19                                                                                        | Urine<br>Female   | -ve              | +ve    | -ve     | +ve      | -ve | -ve | -ve    | -ve                    | E.coli     |  |
| S20                                                                                        | Urine<br>Female   | -ve              | ND     | ND      | ND       | ND  | ND  | ND     | ND                     | Pseu. spp  |  |
| S21                                                                                        | Urine<br>Female   | -ve              | +ve    | -ve     | +ve      | -ve | -ve | -ve    | -ve                    | E.coli     |  |
| S22                                                                                        | Urine<br>Female   | -ve              | ND     | ND      | ND       | ND  | ND  | ND     | ND                     | Pseu. spp  |  |
| S23                                                                                        | Urine<br>Male     | -ve              | +ve    | -ve     | +ve      | -ve | -ve | -ve    | -ve                    | E.coli     |  |
| S24                                                                                        | Urine<br>Male     | -ve              | +ve    | -ve     | +ve      | -ve | -ve | -ve    | -ve                    | E.coli     |  |

Int J Pharm Biol Sci.



| S25 | Urine<br>Male            | -ve | +ve | -ve | +ve | -ve | -ve | -ve | -ve | E.coli     |
|-----|--------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------------|
| S26 | Urine<br>Female          | -ve | ND  | Pseu. spp  |
| S27 | Urine<br>Female          | -ve | +ve | -ve | +ve | -ve | -ve | -ve | -ve | E.coli     |
| S28 | Urine<br>Female          | -ve | +ve | -ve | +ve | -ve | -ve | -ve | -ve | E.coli     |
| S29 | Urine<br>Female          | -ve | +ve | -ve | +ve | -ve | -ve | -ve | -ve | E.coli     |
| S30 | Urine<br>Male            | -ve | +ve | -ve | +ve | -ve | -ve | -ve | -ve | E.coli     |
| S31 | Urine<br>Female          | -ve | +ve | -ve | +ve | -ve | -ve | -ve | -ve | E.coli     |
| S32 | Urine<br>Male            | -ve | +ve | -ve | +ve | -ve | -ve | -ve | -ve | E.coli     |
| S33 | Urine<br>Female          | -ve | +ve | -ve | +ve | -ve | -ve | -ve | -ve | E.coli     |
| S34 | Urine<br>Male            | -ve | +ve | -ve | +ve | -ve | -ve | -ve | -ve | E.coli     |
| S35 | Urine<br>Female          | -ve | +ve | -ve | +ve | -ve | -ve | -ve | -ve | E.coli     |
| S36 | Urine F<br>Female        | +ve | -ve | +ve | +ve | -ve | -ve | -ve | -ve | Ente. spp  |
| S37 | Urine<br>Female<br>Urine | -ve | +ve | -ve | +ve | -ve | -ve | -ve | -ve | E.coli     |
| S38 | Male<br>Urine            | -ve | +ve | -ve | +ve | -ve | -ve | -ve | -ve | E.coli     |
| S39 | Male<br>Urine            | -ve | +ve | -ve | +ve | -ve | -ve | -ve | -ve | E.coli     |
| S40 | Female<br>Urine          | -ve | +ve | -ve | +ve | -ve | -ve | -ve | -ve | E.coli     |
| S41 | Female<br>Urine          | -ve | +ve | -ve | +ve | -ve | -ve | -ve | -ve | E.coli     |
| S42 | Female<br>Urine          | -ve | ND  | Pseu.spp   |
| S43 | Male<br>Urine            | -ve | +ve | -ve | +ve | -ve | -ve | -ve | -ve | E.coli     |
| S44 | Male<br>Urine            | +ve | ND  | Staph. spp |
| S45 | Female<br>Urine          | -ve | +ve | -ve | +ve | -ve | -ve | -ve | -ve | E.coli     |
| S46 | Male<br>Urine            | -ve | +ve | -ve | +ve | -ve | -ve | -ve | -ve | E.coli     |
| S47 | Male<br>Urine            | -ve | +ve | -ve | +ve | -ve | -ve | -ve | -ve | E.coli     |
| S48 | Male<br>Urine            | -ve | +ve | -ve | +ve | -ve | -ve | -ve | -ve | E.coli     |
| S49 | Male<br>Urine            | -ve | +ve | -ve | +ve | -ve | -ve | -ve | -ve | E.coli     |
| S50 | Male<br>Urine            | +ve | ND  | Staph. spp |
| S51 | Female                   | -ve | +ve | -ve | +ve | -ve | -ve | -ve | -ve | E.coli     |



| S52 | Urine<br>Male   | +ve | ND  | Staph. spp |
|-----|-----------------|-----|-----|-----|-----|-----|-----|-----|-----|------------|
| S53 | Urine<br>Female | -ve | +ve | -ve | +ve | -ve | -ve | -ve | -ve | E.coli     |
| S54 | Urine<br>Female | -ve | +ve | -ve | +ve | -ve | -ve | -ve | -ve | E.coli     |
| S55 | Urine<br>Female | +ve | ND  | Staph. spp |
| S56 | Urine<br>Female | -ve | +ve | -ve | +ve | -ve | -ve | -ve | -ve | E.coli     |
| S57 | Urine<br>Female | -ve | +ve | -ve | +ve | -ve | -ve | -ve | -ve | E.coli     |

Table 3.a: Pattern of multidrug resistance among uropathogenic *E. coli* isolates.s:-susceptible, I:-intermediate R:-resistance and s1 s2.....s40 :- sample

| S.No | <b>S1</b> | <b>S2</b> | <b>S3</b> | <b>S4</b> | <b>S5</b> | <b>S6</b> | <b>S7</b> | S8 | <b>S9</b> | <b>S10</b> | <b>S11</b> | <b>S12</b> | <b>S13</b> | <b>S14</b> |
|------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----|-----------|------------|------------|------------|------------|------------|
| Amp  | R         | R         | R         | R         | R         | R         | R         | R  | R         | R          | R          | R          | R          | R          |
| Tob  | R         | 1         | S         | S         | R         | S         | R         | 1  | R         | S          | S          | R          | R          | R          |
| Ak   | R         | S         | S         | S         | R         | S         | R         | S  | R         | S          | S          | R          | S          | S          |
| Cip  | R         | R         | R         | R         | R         | R         | R         | R  | S         | R          | R          | R          | R          | R          |
| Gen  | R         | S         | S         | S         | R         | S         | R         | S  | S         | S          | S          | R          | S          | R          |
| Le   | R         | R         | R         | R         | R         | R         | R         | R  | S         | R          | R          | R          | R          | R          |
| Nit  | S         | S         | S         | S         | S         | S         | S         | S  | 1         | S          | S          | R          | S          | S          |
| Nor  | R         | R         | R         | R         | R         | R         | R         | R  | S         | R          | R          | R          | R          | R          |
| Te   | R         | R         | S         | R         | R         | S         | R         | R  | S         | S          | S          | R          | R          | R          |
| Cot  | R         | R         | S         | R         | R         | S         | R         | R  | S         | R          | S          | R          | R          | R          |
| Tcc  | R         | R         | S         | S         | R         | S         | R         | R  | 1         | R          | S          | R          | R          | S          |
| Ctr  | R         | R         | R         | R         | R         | R         | R         | R  | R         | R          | R          | R          | R          | R          |
| Amc  | R         | R         | R         | S         | R         | S         | R         | R  | R         | R          | R          | S          | R          | S          |
| Cz   | R         | R         | S         | R         | R         | R         | R         | R  | R         | R          | R          | R          | R          | S          |
| Cpm  | R         | R         | S         | S         | R         | S         | R         | R  | R         | R          | S          | R          | R          | R          |
| Caz  | R         | R         | S         | S         | R         | S         | R         | R  | I         | R          | S          | R          | R          | R          |
| Fo   | R         | S         | S         | S         | R         | S         | S         | S  | S         | S          | S          | S          | S          | S          |
| At   | 1         | R         | S         | S         | ı         | S         | R         | R  | R         | R          | S          | R          | R          | I          |
| Mrp  | R         | S         | R         | S         | R         | S         | R         | S  | R         | R          | S          | S          | R          | S          |
| Na   | R         | R         | S         | R         | R         | R         | R         | R  | R         | R          | R          | R          | R          | R          |
| Ptz  | R         | S         | S         | S         | R         | S         | R         | S  | S         | R          | S          | S          | R          | S          |
| A/s  | R         | R         | R         | S         | R         | S         | R         | R  | R         | R          | S          | R          | R          | S          |
| Azm  | R         | R         | S         | S         | R         | S         | R         | R  | R         | R          | R          | S          | 1          | R          |
| Cx   | R         | R         | S         | S         | R         | S         | R         | R  | R         | R          | S          | S          | R          | S          |
| Dor  | R         | S         | S         | S         | R         | S         | R         | S  | R         | R          | S          | S          | R          | S          |
| lpm  | R         | S         | S         | S         | R         | S         | R         | S  | R         | R          | S          | R          | R          | S          |
| Col  | S         | S         | S         | S         | R         | S         | R         | S  | R         | S          | S          | S          | S          | R          |
| С    | S         | S         | S         | S         | S         | S         | R         | S  | R         | R          | S          | S          | S          | S          |
| Cf   | R         | R         | R         | R         | R         | R         | R         | R  | R         | R          | R          | R          | R          | R          |
| Dox  | R         | S         | S         | S         | R         | S         | R         | S  | R         | S          | S          | S          | S          | R          |



Table: 3. b

| Table: 3. b |    |    |    |    |           |    |    |    |    |    |    |    |    |    |
|-------------|----|----|----|----|-----------|----|----|----|----|----|----|----|----|----|
| S.no        | S  | S  | S  | S  | <b>S1</b> | S  | S  | S  | S  | S  | S  | S  | S  | S  |
| 3.110       | 15 | 16 | 17 | 18 | 19        | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 |
| Amp         | R  | R  | S  | R  | R         | R  | R  | R  | R  | R  | R  | R  | R  | R  |
| Tob         | S  | S  | 1  | R  | R         | R  | S  | R  | R  | R  | S  | R  | S  | S  |
| Ak          | S  | S  | 1  | R  | R         | R  | S  | 1  | S  | S  | S  | S  | S  | S  |
| Cip         | R  | R  | 1  | R  | S         | R  | R  | R  | R  | R  | S  | S  | R  | R  |
| Gen         | S  | S  | R  | R  | R         | S  | S  | R  | R  | R  | S  | R  | S  | S  |
| Le          | R  | R  | R  | R  | S         | R  | R  | R  | R  | R  | S  | S  | R  | R  |
| Nit         | S  | S  | S  | 1  | S         | S  | S  | 1  | S  | S  | S  | S  | S  | S  |
| Nor         | R  | R  | S  | R  | S         | R  | R  | R  | R  | R  | S  | S  | R  | R  |
| Te          | S  | R  | S  | S  | R         | R  | R  | S  | R  | R  | S  | R  | R  | R  |
| Cot         | R  | R  | S  | R  | R         | S  | R  | R  | S  | S  | R  | R  | R  | S  |
| Tcc         | S  | S  | S  | R  | R         | R  | R  | R  | S  | S  | S  | S  | R  | R  |
| Ctr         | R  | R  | R  | R  | R         | R  | R  | R  | R  | R  | R  | R  | R  | R  |
| Amc         | S  | S  | S  | R  | R         | S  | R  | S  | S  | R  | S  | S  | R  | R  |
| Cz          | R  | R  | R  | R  | R         | R  | R  | R  | R  | R  | R  | R  | R  | R  |
| Cpm         | S  | S  | S  | R  | R         | S  | R  | R  | R  | R  | R  | R  | R  | R  |
| Caz         | S  | S  | R  | 1  | R         | R  | R  | R  | S  | R  | S  | S  | R  | R  |
| Fo          | S  | S  | S  | 1  | S         | S  | S  | S  | S  | S  | S  | S  | S  | S  |
| At          | S  | S  | S  | I  | S         | S  | R  | R  | R  | R  | R  | S  | R  | R  |
| Mrp         | S  | S  | S  | 1  | S         | S  | R  | S  | S  | S  | S  | S  | R  | S  |
| Na          | R  | R  | S  | R  | S         | R  | R  | R  | R  | R  | R  | R  | R  | R  |
| Ptz         | S  | S  | R  | 1  | R         | S  | R  | S  | S  | S  | S  | S  | R  | R  |
| A/s         | S  | S  | S  | R  | R         | S  | R  | R  | I  | R  | S  | 1  | R  | R  |
| Azm         | S  | S  | S  | R  | R         | S  | R  | R  | S  | S  | S  | S  | R  | S  |
| Сх          | S  | S  | S  | R  | R         | S  | R  | 1  | S  | S  | S  | S  | R  | R  |
| Dor         | S  | S  | R  | R  | S         | S  | R  | S  | S  | S  | S  | S  | R  | S  |
| lpm         | S  | S  | S  | R  | R         | S  | R  | R  | R  | R  | R  | R  | R  | S  |
| Col         | S  | S  | S  | S  | S         | R  | S  | S  | S  | S  | S  | S  | S  | S  |
| С           | S  | S  | S  | R  | S         | S  | R  | R  | S  | S  | S  | S  | R  | S  |
| Cf          | R  | R  | S  | R  | R         | S  | R  | R  | R  | R  | S  | R  | R  | R  |
| Dox         | S  | S  | S  | S  | S         | R  | S  | S  | S  | S  | S  | 1  | S  | R  |

| Tab | le | 3.0 |  |
|-----|----|-----|--|
|-----|----|-----|--|

| C === | S  | S   | S  | S   | S   | S  | S  | S  | S  | S  | S   | S  |
|-------|----|-----|----|-----|-----|----|----|----|----|----|-----|----|
| S.no  | 29 | 30  | 31 | 32  | 33  | 34 | 35 | 36 | 37 | 38 | 39  | 40 |
| Amp   | R  | R   | R  | R   | S   | S  | R  | R  | R  | R  | R   | R  |
| Tob   | S  | S   | S  | S   | S   | R  | R  | S  | S  | 1  | R   | 1  |
| Ak    | S  | S   | S  | S   | 1   | S  | R  | S  | S  | S  | - 1 | S  |
| Cip   | R  | R   | R  | R   | - 1 | R  | R  | R  | R  | S  | R   | R  |
| Gen   | R  | S   | S  | S   | S   | S  | R  | S  | S  | R  | S   | 1  |
| Le    | R  | R   | R  | R   | R   | R  | R  | R  | R  | R  | R   | R  |
| Nit   | S  | S   | S  | S   | S   | S  | S  | S  | S  | S  | S   | S  |
| Nor   | R  | R   | R  | R   | - 1 | R  | R  | R  | R  | R  | R   | R  |
| Te    | R  | R   | R  | S   | 1   | S  | R  | R  | R  | R  | R   | R  |
| Cot   | R  | - 1 | S  | S   | S   | S  | R  | S  | R  | R  | - 1 | R  |
| Tcc   | S  | S   | R  | S   | S   | S  | R  | R  | S  | S  | R   | R  |
| Ctr   | R  | R   | R  | - 1 | 1   | R  | R  | R  | R  | R  | R   | R  |
| Amc   | S  | S   | R  | S   | S   | S  | R  | R  | S  | R  | R   | R  |
| Cz    | R  | R   | R  | R   | R   | S  | R  | R  | R  | R  | R   | R  |
| Cpm   | S  | S   | R  | 1   | 1   | S  | R  | S  | R  | R  | R   | R  |



| Caz | S | S | R | S | l   | R   | R   | R   | S | R | R   | S |  |
|-----|---|---|---|---|-----|-----|-----|-----|---|---|-----|---|--|
| Fo  | S | S | S | S | S   | R   | S   | S   | S | R | S   | S |  |
| At  | S | S | R | S | - 1 | R   | R   | - 1 | S | R | R   | R |  |
| Mrp | S | S | S | S | - 1 | R   | R   | S   | S | R | S   | R |  |
| Na  | R | R | R | R | 1   | R   | R   | R   | R | R | R   | R |  |
| Ptz | S | S | S | S | S   | S   | R   | S   | S | S | R   | S |  |
| A/s | S | S | R | S | S   | S   | R   | R   | S | R | R   | R |  |
| Azm | S | S | S | S | S   | R   | - 1 | S   | 1 | S | I   | S |  |
| Cx  | S | S | R | S | S   | - 1 | R   | R   | S | R | R   | S |  |
| Dor | S | S | S | S | S   | S   | R   | S   | S | S | S   | S |  |
| lpm | S | S | S | S | S   | S   | R   | S   | S | R | S   | S |  |
| Col | S | S | S | S | 1   | S   | S   | S   | S | 1 | S   | S |  |
| С   | S | S | S | S | S   | S   | S   | S   | S | R | S   | R |  |
| Cf  | R | R | R | R | 1   | R   | R   | R   | R | S | R   | S |  |
| Dox | S | S | R | S | S   | S   | R   | S   | R | S | - 1 | S |  |

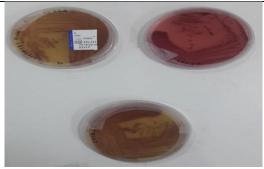



Fig no. 1 Isolation of E. coli on MacConkey agar, Michrome Agar and C.L.E.D Agar



Fig no. 2 Antibacterial Susceptibility test

## **CONCLUSION**

It is quite alarming to note that almost all of the isolates included in this study were found resistant to seven or more antibiotics. Antibiotic resistance is becoming a big problem for the individuals admitted to health care centers with chronic conditions as well as for medical professionals.

All isolates showed multiple antibiotic resistance property, maxi-mum resistance was found against Ampicillan, levofloxacin, cefazolin, cefxime, nalidixic acid, ciprofloxacin, norfloxacin.

Whereas least resistance was detected against cephotaxime, amikacin and chloramphenicol. All twenty isolates were sensitive to Chloramphenicol, colistin, doxycycline, nitrofurantoin, and fosfomycin

and hence those might be the drugs of choice to treat UPEC.

#### **REFERENCES**

- 1. Escherich T (1885). "Die Darmbakterien des Neugeborenen und Säuglinge". Fortschr. Med. 3: 515– 522.
- Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, et al. (2005). "Diversity of the human intestinal microbial flora". Science. 308 (5728): 1635.
- 3. Nicolle LE (February 2008). "Uncomplicated urinary tract infection in adults including uncomplicated pyelonephritis". *Urol. Clin. North Am.* 35 (1): 1–12.
- 4. Justice S, Hunstad D, Seed P, Hultgren S (2006). "Filamentation by *Escherichia coli* subverts innate 12

Int J Pharm Biol Sci.



- defenses during urinary tract infection". *Proc Natl Acad Sci U S A.* 103(52): 19884–
- Salyers AA, Gupta A, Wang Y 2004. Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol 12: 412–416 [PubMed] [Google Scholar]
- Chemical Analysis of Antibiotic Residues in Food (2012). John Wiley & Sons, Inc. 2012. pp. 1–60. ISBN 978-1-4496-1459-1.
- 7. All other chemicals were from A Division of tulip diagnostics (P) Ltd., Microxpress Pvt. Ltd
- 8. Patrick R. et al (Manual clinical microbiology 9tha ED
- 9. Duguid JP, 1999).
- 10. MacFaddin JF. 2000
- 11. Snell et al. (Snell et al.1999).
- 12. Finger gold et al. 1974).
- 13. Dash et al., (Dash et al., 2012) Chakraborty SP et al. 2011b